
Breaking Cryptographic Implementations Using
Deep Learning Techniques

Houssem Maghrebi, Thibault Portigliatti?, Emmanuel Prouff

SAFRAN Identity and Security,
18, Chaussée Jules César, 95520 Osny, France.

firstname.lastname@safrangroup.com

Abstract. Template attack is the most common and powerful profiled
side channel attack. It relies on a realistic assumption regarding the noise
of the device under attack: the probability density function of the data
is a multivariate Gaussian distribution. To relax this assumption, a re-
cent line of research has investigated new profiling approaches mainly
by applying machine learning techniques. The obtained results are com-
mensurate, and in some particular cases better, compared to template
attack. In this work, we propose to continue this recent line of research by
applying more sophisticated profiling techniques based on deep learning.
Our experimental results confirm the overwhelming advantages of the
resulting new attacks when targeting both unprotected and protected
cryptographic implementations.

Keywords: deep learning, machine learning, side channel attacks, template at-
tack, unprotected AES implementation, masked AES implementation.

1 Introduction

Side Channel Attacks. Side Channel attacks (SCA) are nowadays well known
and most designers of secure embedded systems are aware of them. They exploit
information leaking from the physical implementations of cryptographic algo-
rithms. Since, this leakage (e.g. the power consumption or the electromagnetic
emanations) depends on the internally used secret key, the adversary may per-
form an efficient key-recovery attack to reveal these sensitive data. Since the
first public reporting of these threats [30], a lot of effort has been devoted to-
wards the research on side channel attacks and the development of corresponding
countermeasures.

Amongst side channel attacks, two classes may be distinguished.

– The so-called profiling SCA are the most powerful kind of SCA and consist
of two steps. First, the adversary procures a copy of the target device and
uses it to characterize the dependency between the manipulated data and
the device behavior. Secondly, he performs a key-recovery attack on the

? Work done when the author was at SAFRAN Identity and Security.



target device. The set of profiled attacks includes Template attacks [10] and
Stochastic cryptanalyses (aka Linear Regression Analyses) [16,47,48].

– The set of so-called non-profiling SCA corresponds to a much weaker ad-
versary who has only access to the physical leakage captured on the target
device. To recover the secret key in use, he performs some statistical analyses
to detect dependency between the leakage measurements and this sensitive
variable. The set of non-profiled attacks includes Differential Power Analysis
(DPA) [30], Correlation Power Analysis (CPA) [9] and Mutual Information
Analysis (MIA) [20].

Side Channel Countermeasures. A deep look at the state-of-the-art shows
that several countermeasures have been published to deal with side channel
attacks. Amongst SCA countermeasures, two classes may be distinguished [36]:

– The set of so-called masking countermeasures: the core principle of masking
is to ensure that every sensitive variable is randomly split into at least two
shares so that the knowledge of a strict sub-part of the shares does not give
information on the shared variable itself. Masking can be characterized by
the number of random masks used per sensitive variable. So, it is possible
to give a general definition for a dth-order masking scheme: every sensitive
variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a way
that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation used in the Boolean masking, denoted as ⊕) and
no tuple of strictly less than d + 1 shares depends on Z. In the literature,
several provably secure higher-order masking schemes have been proposed
(see for instance [13], [19] and [44].).

– The set of so-called hiding countermeasures: the core idea is to render in
making the activity of the physical implementation constant by either adding
complementary logic to the existing logic [11] (in a hardware setting) or by
using a specific encoding of the sensitive data [27,50] (in a software setting).

Machine Learning based Attacks. A recent line of works has investigated
new profiling attacks based on Machine Learning (ML) techniques to defeat both
unprotected [5,23,28,32,34] and protected cryptographic implementations [21,33].
These contributions focus mainly on two techniques: the Support Vector Machine
(SVM) [14,57] and the Random Forest (RF) [45]. Practical results on several
data-sets have demonstrated the ability of these attacks to perform successful
key recoveries. Besides, authors in [23] have shown that the SVM-based attack
outperforms the template attack when applied on highly noisy traces.

Mainly, ML-based attacks exploit the same discriminating criteria (i.e. the
dependence between the sensitive data and some statistical moments of the leak-
age) as a template attack. Two major differences between these attacks exist.
They are listed hereafter.

– The template attack approximates the data distribution by a multivariate
Gaussian distribution (aka Gaussian leakage assumption) [10] whose param-
eters (i.e. the mean vector and the covariance matrix) are estimated during

2



the profiling phase. This implies that the statistical moments of the leakage
distribution whose order is greater than 2 are not exploited which can make
the attack sub-optimal and even ineffective in some contexts.

– The ML-based attacks make no assumption on the data distribution and
build classifications directly from the raw data-set.

Despite the fact that Gaussian leakage is a fairly realistic assumption in
side channel context [35,43], applying distribution-agnostic statistical techniques
would appear to be a more rational approach.

Our Contribution. Over the past few years, there has been a resurgence of
interest in using Deep Learning (DL) techniques which have been applied in sev-
eral signal processing areas where they have produced interesting results [1,15].
Deep learning is a parallel branch of machine learning which relies on sets of al-
gorithms that attempt to model high-level abstractions in data by using model
architectures with multiple processing layers, composed of a sequence of scalar
products and non-linear transformations called activation functions [51]. Several
recent results have demonstrated that DL techniques have convincingly out-
performed other existing machine learning approaches in image and automatic
speech recognition.

In this work, we propose to apply DL techniques in side channel context.
Actually, we highlight the ability of DL to build an accurate profiling leading
to an efficient and successful side channel key recovery attack. Our experiments
show that our proposed DL-based attacks are more efficient than the ML-based
and template attacks when targeting either unprotected or masked cryptographic
implementations.

Paper Outline. The paper is organized as follows. In Secs. 2 and 3, we provide
an overview on machine learning and deep learning techniques. Then, in Sec. 4
we describe how to use deep learning techniques to perform a successful key
recovery. This is followed in Sec. 5 by some practical attack experiments applied
on unprotected and masked AES implementations. Finally, Sec. 6 draws general
conclusions and opens some perspectives for future work.

2 Overview on Machine Learning Techniques

Machine learning techniques have been developed and used in order to build ef-
ficient pattern recognition and features extraction algorithms. Mainly, ML tech-
niques are divided into three categories depending on the learning approach:
unsupervised, semi-supervised and supervised. In this paper, we focus on super-
vised and unsupervised learning techniques.

– Unsupervised learning is mainly used when profiling information (i.e. train-
ing data-set) is not available. So, the purpose is to ensure an efficient data

3



partitioning without any prior profiling or data modeling. Two classic exam-
ples of unsupervised learning techniques are clustering (e.g. K-means [17])
and dimensionality reduction (e.g. Principal Component Analysis (PCA)).
These techniques have been widely used in side channel contexts to perform
either successful key recovery [24,52] or some pre-processing of the physical
leakage [4].

– Supervised learning refers to techniques that involve a training data-set1 (aka
labeled data-set) to build a model. Once the learning has been performed, a
supervised learning algorithm is executed which returns, for a new incoming
input, an output that is the most accurate one according to the previously
learned model. Typical supervised learning techniques include neural net-
works [8], random forest [45] and support vector machines [14,57].

In the following sections we provide a survey of some supervised learning
techniques and their applications in side channel analysis. All of them take as
input a training data-set composed of vectors X(i) = (x1, . . . , xn) ∈ Rn and their
corresponding labels yi ∈ R (e.g. scores or values of the manipulated sensitive
data). After the learning step, their goal is to associate a new vector X with the
correct label y.

2.1 Perceptron

The perceptron is the simplest neural network model [8]. It is a linear classifier
that uses a learning algorithm to tune its weights in order to minimize a so-called
loss function2 as described in Fig. 1. We detail hereafter how perceptron works
to perform classification:

– first, an input vector X = (x1, . . . , xn) ∈ Rn is presented as an entry to the
perceptron.

– then, components of X are summed over the weights wi ∈ R of the percep-

tron connections (i.e. w0 +
n∑

i=1

wixi, with w0 being a bias3).

– finally, the output of the perceptron is computed by passing the previously
computed sum to an activation function4 denoted f .

During the training phase, the perceptron weights, initialized at zeros or small
random values, are learned and adjusted according to the profiling data-set (X(i),
yi). By e.g. applying a gardient descent algorithm, the goal is to find/learn the
optimal connecting weights moving the perceptron outputs as close as possible5

1 The training data-set is composed of pairs of some known (input, output).
2 The loss (aka cost, error) function quantifies in a supervised learning problem the

compatibility between a prediction and the ground truth label (output). The loss
function is typically defined as the negative log-likelihood or the mean squared error.

3 Introducing a value that is independent of the input shifts the boundary away from
the origin.

4 In the case of the perceptron, the activation function is commonly a Heaviside func-
tion. In more complex models (e.g. the multilayer perceptron that we will describe
in the next section), this function can be chosen to be a sigmoid function (tanh).

5 e.g. for the Euclidean distance.

4



Fig. 1. Representation of a perceptron.

to the correct labels/scores (e.g. to minimize the sum of squared differences
between the labels yi and the corresponding perceptron’s output).

2.2 Multilayer Perceptron

A Multilayer Perceptron (MLP) is nothing more than a specific way to combine
perceptrons6 in order to build a classifier for more complex data-sets [8]. As
shown in Fig. 2, the information is propagated from the left to the right and each
units (perceptrons) of a layer is connected to every unit of the previous layer in
this model. This is called a fully connected network. Each neuron belongs to a
layer and the number of layers is a parameter which has to be carefully chosen
by the user.

An MLP is made of three different types of layers:

– Input Layer: in the traditional model, this layer is only an intermediate
between the input data and the rest of the network. Thus the output of the
neurons belonging to this layer is simply the input vector itself.

– Hidden layer: this layer aims at introducing some non-linearity in the model
so that the MLP will be able to fit a non-linear separable data-set. Indeed, if
the data that have to be learned are linearly separable, there is no need for
any hidden layer. Depending on the non-linearity and the complexity of the
data model that has to be fit, the number of neurons on the hidden layer or
even the number of these layers can be increased. However, one hidden layer
is sufficient for a large number of natural problems.
Regarding the number of neurons on the hidden layers, it has been demon-
strated that using a huge number of neurons can lead to over-fitting if the

6 Perceptrons are also called ”units”, ”nodes” or neurons in this model.

5



Fig. 2. Example of MLP, where each node is a perceptron as described in Sec. 2.1.

model that has to be learned is close to a linear one [8]. It means that the
algorithm is able to correctly learn weights leading to a perfect fit with the
training data-set while these weights are not representative of the whole data.
On the other hand, the opposite may happen: for a complex data-set, using
too few neurons on the hidden layers may lead the gradient minimization
approach to fail in returning an accurate solution.

– Output layer: this is the last layer of the network. The output of the nodes
on this layer are directly mapped to classes that the user intends to predict.

Training a multilayer perceptron requires, for each layer, the learning of the
weighting parameters minimizing the loss function. To do so, the so-called back-
propagation [8] can be applied. It consists in computing the derivative of the
loss function with respect to the weights, one layer after another, and then in
modifying the corresponding weights by using the following formula:

∆wij = − ∂E

∂wi,j
,

where E is the loss function and wi,j denotes the weight of the connection be-
tween two neurons of indices (i, j).

In several recent works, MLP has been applied to perform successful side
channel key recovery. For instance, in [21], authors have presented a neural net-
work based side channel attack to break the masked AES implementation of
the DPA contest V4 [55]. In fact, the authors of [21] assume that the adversary
has access to the mask values during the profiling phase. Under this assump-
tion, the proposed attack consists first in identifying the mask by applying a
neural network mask recovery. Then, a second neural network based attack is
performed to recover the secret key with a single trace. While the results of this

6



work are quite interesting, the considered assumption is not always met in real
world circumstances.

2.3 Decision Trees and Random Forest

A decision tree is a tool involving binary rules to classify data [45]. It is made of
a root, several nodes and leaves. Each leaf is associated to a label corresponding
to the target value to be recovered. Each node that is not a leaf can lead to two
nodes (or leaves). First, the input is presented to the root. It is then forwarded
to one of the possible branch starting from this node. The process is repeated
until a leaf is reached. An illustration of this process for a 2-bit XOR operation
is depicted in Fig. 3.

Fig. 3. Partial graphical representation of a decision tree performing the XOR opera-
tion between 2 bits variables x1 and x2. The leaves correspond to the XOR result.

7



A random forest is composed of many decision trees, each one working with
a different subset of the training data-set [45]. On the top of all of the trees, the
global output is computed through a majority vote among these classification
trees outputs. RFs have been successfully applied in SCA context to defeat
cryptographic implementations [33,34]. In this paper, we will try to compare
RF-based attack with deep learning ones in terms of key recovery effectiveness.

2.4 Support Vector Machine

A support vector machine [14,57] is a linear classifier that not only intends to
find an hyper-plane to separate data classes but also intends to find the optimal
one maximizing the margin between these classes as described in Fig. 4. To
deal with non-linearly separable data-sets, it is possible for instance to use a
kernel function for instance that maps these data into a feature space of higher
dimensions in which the classes become linearly separable [49].

Fig. 4. Binary hyper-plane Classification.

In the side channel literature, several works have investigated the use of SVM
towards performing successful attacks to break either unprotected [5,23,28,32,34]
or protected cryptographic implementations [33]. Actually, authors in [23] have
demonstrated that when the Signal-to-Noise Ratio (SNR)7 of the targeted data-
set is very low, the SVM-based attack outperforms the template attack.

7 The SNR is defined as the ratio of signal power to the noise power.

8



3 Overview on Deep Learning Techniques

For several reasons (mainly the vanishing gradient problem [25] and the lack of
computational power), it was not possible to train many-layered neural networks
until a few years ago. Recent discoveries, taking full advantage of GPU for com-
putations and using the rectified linear unit function (f : x 7→ max(0, x)) as
an activation function instead of the classical sigmoid (g : x 7→ 1

1+e−x ), made it
possible to stack many layers allowing networks to learn more and more abstract
representation of the training data-set [29]. This is known as deep learning tech-
niques [1]. One major difference between deep learning and usual machine learn-
ing is that the latter ones are classifiers usually working from human-engineered
features while the former ones learn the features directly from the raw data be-
fore making any classification [6]. In the following sections, some of the most
widely used learning techniques are detailed.

3.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specific kind of neural network built
by stacking the following layers [31,40]:

– A convolutional layer: on this layer, during the forward computation phase,
the input data are convoluted with some filters. The output of the convolu-
tion is commonly called a feature map. It shows where the features detected
by the filter can be found on the input data. In Fig. 5, we provide an ex-
ample of a convolutional layer where the input vector X is represented as
a matrix (i.e. X = (xi,j) ∈ Rt×t where t is smallest square integer greater
than the size n of X viewed as a vector) and padded with zeros around the

border8. The output values can be expressed as yi,j =
m∑

a=1

m∑
b=1

wa,bxi+a,j+b,

where wa,b denotes the weights of the filter viewed as an m-by-m matrix.
During the backward computation, the filter weights are learned9 by trying
to minimize the overall loss.

– A Max Pooling layer: this is a sub-sampling layer. The feature map is di-
vided into regions and the output of this layer is the concatenation of the
maximum values of all these regions. Such layers can help reducing compu-
tation complexity and enhance the robustness of the model with respect to
a translation of the input.

– A SoftMax layer: it is added on the top of the previous stacked layers. It
converts scores from the previous layer to a probability distribution over the
classes.

Learning the filters enables to extract high level features from the data.
This step may therefore be used as a dimensionality reduction or a Points Of

8 The goal is to control the size of the output.
9 As for the MLP weights estimations, the filter parameters are learned using the

back-propagation algorithm.

9



Fig. 5. An example of a convolutional layer where n = 25, t = 5 and m = 3.

Interest (POI) selection technique (e.g. a PCA). Based on this remark, it would
be interesting to assess the efficiency of the CNN internal features extraction
function in selecting the most informative points to perform a successful key
recovery attack.

3.2 Stacked Auto-Encoders

Stacked auto-encoders are artificial neural networks with many layers trained
by following a very specific procedure [37]. This procedure consists in training
each layer independently, using the output of the previous layer as input for
the current one. Each layer is composed of an encoder and a decoder, both
being a dense layer (i.e. fully connected layer)10. The role of the encoder is to
generate higher level features from the inputs. Whereas, the decoder role is to
reconstruct the inputs from the intermediate features learned by the encoder11

as described in Fig. 6. A very uninteresting network would learn the identity
function. To avoid such a behavior, a thumb rule could be that each layer has
to be smaller than the previous one12. This way the network will be forced to
learn a compressed representation of the input. Once the training is done, the
decoder is removed, the newly generated encoder is stacked with the previously
trained ones and the procedure can be repeated using the output of the newly
trained layer.

10 This is also known as a restricted Boltzmann machine [46].
11 We refer the interested reader to another type of auto-encoder deep learning tech-

nique called Denoising auto-encoder [56,58]. This specific kind of auto-encoder aims
at removing the noise when fed with a noisy input.

12 This is not mandatory; some empirical results have shown that it might be better
to sometimes have more neurons on the first hidden layer than on the output as a
”pre-learning” step.

10



Fig. 6. Learning an auto-encoder layer. First, the input X = (x0, x1, x2, x3, x4) ∈ R5

is encoded. Then, the obtained result H = (h0, h1, h2, h3, h4) ∈ R5 is decoded using

the second layer of the diagram to reconstruct the input X̂ = (x̂0, x̂1, x̂2, x̂3, x̂4) ∈ R5.

The difference (X − X̂) is then computed and fed to the back-propagation algorithm
to estimate the optimal weights minimizing the loss function.

On the top of the stacked auto-encoder layers, a SoftMax classifier is usually
added to predict the class of the input using the high level extracted features
of the last layer. Each of these layers (including the SoftMax layer) is trained
sequentially. But once the last layer is trained, a global training using the well-
known Back-propagation algorithm is performed. This technique is known as
fine tuning [37].

Like CNN, auto-encoders are features extractors. Their role is to build high
level features that are easier to use in a profiling task. This task is particularly
meaningful in SCA where the features selection method is critical.

3.3 Recurrent Neural Networks

The Recurrent Neural Networks (RNN) [22] are dedicated to data for which the
same information is spread over several time samples. Thus, instead of assuming
that the components of the input vectors are mutually independent, each neuron
will infer its output from both the current input and output of previous units.
The RNN technique could be applied in the context of SCA since the leakage is
spread actually over several time samples.

In Fig. 7, we explain how this time-dependency is used by the RNN during the
profiling phase. Let n be the number of sample in our trace. For any i in [1, n], the
ith output si rewrites si = f(U ·xi +W · si−1), where (U,W ) are the connecting
weights that the RNN have to learn and f denotes the activation function. To

11



Fig. 7. An unrolled recurrent layer.

get the ith output yj , a SoftMax layer is added such that yj = SoftMax(V · si)
where V is a connecting weight. Unlike traditional deep learning techniques
which use different weights at each layer, a RNN shares the same parameters
(U, V,W ) across all layers13. To adjust the network weights of the ith unit, two
different back-propagation phases are processed: the classical one (to learn U)
and a temporal one (to learn W which depends on (i− 1)th output).

3.4 Long and Short Term Memory Units

The Long and Short Term Memory (LSTM) is based on the RNN [26]. It has
been originally introduced to solve problems that had been reported when using
RNN, mainly the vanishing or the exploding gradients [7]. It enables the network
to deal with long time lags between relevant time-series of the processed data-
set. To do so, a cell state (aka memory cell) is added inside each unit. It contains
some statistical information (e.g. mean, variance) computed over a previously
processed time-series of the data. This cell can either be written on or erased
depending on the relevance of the stored information. The decision of writing on
the cell or of clearing it is taken by a small neural network [26].

In side channel context, this feature is quite interesting when dealing with
higher-order attacks where the adversary have to combine several delayed time
samples in order to defeat masked implementations for instance.

In the rest of this paper, we will focus on LSTM rather than RNN for the
reasons outlined above.

13 The purpose is to reduce the number of parameters to be learned.

12



4 Towards New Profiling Methods

Several profiling approaches have been introduced in the literature. A common
profiling side channel attack is the template attack proposed in [10] which is
based on the Gaussian assumption14. It is known as the most powerful type of
profiling in a SCA context when (1) the Gaussian assumption is verified and (2)
the size of the leakage observations is small (typically smaller than 10.000).

When the Gaussian assumption is relaxed, several profiling based side channel
attacks have been suggested including techniques based on machine learning. Ac-
tually, machine learning models make no assumption on the probability density
function of the data. For example, random forest model builds a set of decision
trees that classifies the data-set based on a voting system [34] and SVM-based
attack discriminates data-set using hyper-plane clustering [23]. Indeed, one of
the main drawbacks of the template attacks is their high data complexity [12] as
opposed to the ML-based attacks which are generally useful when dealing with
very high-dimensional data [34].

In the following section, we describe the commonly used template attack be-
fore introducing our new profiling approaches based on deep learning techniques.

4.1 Template Attack

Template attacks have been introduced in 2002 by Chari et al. [10]. Since then,
many works have been published proposing either some efficiency improvements
(e.g. using Principal Component Analysis) [4,5,12] or to extend it to break pro-
tected implementations [41]. The seminal template attack consists first in using
a set of profiling traces15 and the corresponding intermediate results in order to
estimate the probability density function (pdf) fz(L|Z = z) where Z and L are
random variables respectively denoting the target intermediate result and the
corresponding leakage during its processing by the device, and where z ranges
over all the definition set of Z. Usually L is multivariate, say defined over Rd

for some integer d (e.g. d = 1.000). Under the Gaussian assumption, this pdf is
estimated by a multivariate normal law:

fz(L|Z = z) ' 1

(2π)ddet(Σz)
exp

(
−1

2
(L− µz)TΣz(L− µz)

)
,

where Σz denotes the (d× d)-matrix of covariances of (L|Z = z) and where the
d-dimensional vector µz denotes its mean16.

Next, during the attack phase, the adversary uses a new set of traces (li)1≤i≤n

for which the corresponding values zi are unknown. From a key hypothesis k,
he deduces predictions ẑi on these values and computes the maximum likelihood

14 which is that the the distribution of the leakage when the algorithm inputs are fixed
is well estimated by a Gaussian Law.

15 This set of traces is typically acquired on an open copy of the targeted device.
16 The couple (µz, Σz) represents the template of the value z.

13



approach
n∏

j=1

fẑj (lj |Z = ẑj). To minimize approximation errors, it is often more

convenient in practice to process the log-likelihood.

4.2 Deep Learning in Side Channel Analysis Context

Like other machine learning techniques (e.g. SVM and RF), a deep learning
technique builds a profiling model for each possible value zi of the targeted
sensitive variable Z during the training phase and, during the attack phase these
models are involved to output the most likely key (i.e. label) k∗ used during the
acquisition of the attack traces set (li)1≤i≤n.

In side channel attack context, an adversary is rather interested in the compu-
tation of the probability of each possible value ẑi deduced from a key hypothesis.
Therefore, to recover the good key, the adversary computes the maximum or the

log-maximum likelihood approach like for template attack (
n∏

j=1

P (lj |Z = ẑj)).

Indeed, our deep learning techniques only differs from the machine learning
one in the method used to profile data. However, the attack phase remains the
same for both kinds of attack.

5 Experimental Results

In the following section, we compare for different implementation sets the ef-
fectiveness and the efficiency of our proposed DL-based attacks with those of
ML-based and template-based attacks. Mainly, we have targeted a hardware
and a software implementation of an unprotected AES and a first-order masked
AES implementation.

5.1 Experimental Setup

We detail hereafter our experimental setup.

Attacker Profile. Since we are dealing with profiled attacks, we assume an
attacker who has full control of a training device during the profiling phase and is
able to measure the power consumption during the execution of a cryptographic
algorithm. Then during the attack phase, the adversary aims at recovering the
unknown secret key, processed by the same device, by collecting a new set of
power consumption traces. To guarantee a fair and realistic attack comparison,
we stress the fact that the training and the attack data-sets must be different.

Targeted Operation. Regarding the targeted operation, we consider one or
several AES SBox outputs during the first round: Z = SBox[X ⊕ k∗] where
X and k∗ respectively denote the plaintext and the secret key. We motivate
our choice towards targeting this non-linear operation by the facts that it is a
common target in side channel analysis and that it has a high level of confusion.

14



Training and Attack Phase Setup. For fair attack comparison, we have
considered fixed size data-sets for the profiling and the attack: 1.000 power traces
per sensitive value (i.e. Z = z) for the training phase and 20.000 power traces
with a fixed key k∗ for the attack phase.

Evaluation Metric. For the different targeted implementations, we have con-
sidered a fixed attack setup. In fact, each attack is conducted on 10 independent
sets of 2.000 traces each (since we have a set of 20.000 power traces for the attack
phase). Then, we have computed the averaged rank of the correct key among all
key hypotheses (aka the guessing entropy metric [53]).

5.2 Unprotected AES Implementations

DPA Contest V2. Our first experiments were carried out on the DPA con-
test V2 data-set [54]. It is an FPGA-based unprotected AES implementation.
Each trace contains 3.253 samples measuring the power consumption of an AES
execution.

To break this hardware implementation, we have conducted 4 different DL-
based attacks (AE, CNN, LSTM and MLP)17. For the MLP-based attack, we
have considered two versions: for the first one, we have pre-processed traces
by applying a PCA in order to extract the 16 most informative components
(since we will target the 16 SBox outputs). For the second MLP-based attack,
no dimensionality technique was applied. Our purpose here is to check if the
commonly used PCA technique could enhance the efficiency of deep learning
based attacks.

For the sake of completeness, we have performed the seminal template attack
and the RF-based attack18. The evolution of the correct key rank according
to the number of traces for each attack when targeting the first AES SBox is
described in Fig. 8. Besides, the averaged guessing entropy over the 16 AES
SBox is shown in Fig. 9.

From Fig. 9, the following observations may be emphasized:

– the CNN and the AE-based attack slightly outperform template attack. For
instance, for the CNN-based attack 200 traces are roughly needed in average
to recover the key with a success rate of 100%. For the template attack, an
adversary needs roughly 400 traces. This could be explained by the fact that
CNN applies a nice features extraction technique based on filters allowing
dealing with the most informative samples form the processed traces.

– Prepossessing with PCA does not enhance the efficiency of MLP-based at-
tack. In fact, the PCA is probably removing some data components which
are informative for linear clustering representation, but negatively impact
the accuracy of the non-linear model profiling of the MLP network.

17 The parameters for each attack are detailed in Appendix. A.
18 In our attack experiments, we didn’t reported the results of the SVM-based attack

since it achieves a comparable results as those obtained for the RF-based attack.
The same observations were highlighted in [33].

15



101 102 103

Number of queries

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 r

a
n
k 

o
f 

th
e
 c

o
rr

e
ct

 k
e
y

Autoencoder

Convolutional Neural Network

Multilayer Perceptron WITH PCA

Multilayer Perceptron WITHOUT PCA

Template

Random Forest

LSTM

Fig. 8. Evolution of the correct key rank (y-axis) according to an increasing number of
traces (x-axis in log scale base 10) for each attack when targeting the first AES SBox.

– The LSTM performs worse compared to the other types of deep learning
techniques. This could be due to the fact that the leakage of this hardware
implementation is not time-dependent (i.e. the leakage is spread over few
time samples).

Software Unprotected AES Implementation. For our second experiments,
we have considered an unprotected AES implementation on the ChipWhisperer-
Capture Rev2 board [39]. This board is a very compact side channel attack
platform. It enables users to quickly and easily test their implementation against
side channel attacks.

For the sake of comparison, we have performed the same attacks as these
conducted on the DPA contest V2 implementation. In Fig. 10 and Fig. 11, we
reported respectively the guessing entropy when targeting the first AES SBox
and the averaged guessing entropy over the first four SBoxes for each attack and
for an increasing attack traces set.

From Fig. 11, the following observations could be emphasized:

16



101 102 103

Number of queries

0

20

40

60

80

100

120

140

160

180

A
v
e
ra

g
e
 r

a
n
k 

o
f 

th
e
 c

o
rr

e
ct

 k
e
y

Autoencoder

Convolutional Neural Network

Multilayer Perceptron WITH PCA

Multilayer Perceptron WITHOUT PCA

Template

Random Forest

LSTM

Fig. 9. Averaged guessing entropy over the 16 AES SBoxes (y-axis) according to an
increasing number of traces (x-axis in log scale base 10).

– Our proposed deep learning based attacks outperform both template and
RF-based attack. For instance, for the AE-based attack 20 traces are roughly
needed in average to recover the first four bytes of AES key with a success
rate of 100%. For the template attack and RF-based attack, an adversary
needs respectively 100 and 80 traces.

– The performed attacks requires less than 100 traces to recover the first four
bytes of the key. A natural explanation of this result could be that the SNR
is very high on the ChipWhisperer side channel platform.

– The LSTM performs well compared to the results obtained on the DPA
contest V2 data-set. This could be due to the facts that the leakage of a
software implementation is very time-dependent and that the samples are
less noisy.

5.3 First-Order masked AES Implementation

Our last experiments were carried out on a first-order masked AES implemen-
tation on the ChipWhisperer-Capture Rev2 board. The 16 SBoxes outputs are

17



100 101 102 103

Number of queries

0

5

10

15

20

25

30

35

A
v
e
ra

g
e
 r

a
n
k 

o
f 

th
e
 c

o
rr

e
ct

 k
e
y

Autoencoder

Convolutional Neural Network

Multilayer Perceptron

Template

Random Forest

LSTM

Fig. 10. Evolution of the correct key rank (y-axis) according to an increasing number
of traces (x-axis in log scale base 10) for each attack when targeting the first AES
SBox.

masked with the same mask. Our attacks were performed using the same leak-
age model as that used for the previously evaluated unprotected implementations
(i.e. the training data were profiled with respect to the SBox output S[X ⊕ k]).
Unlike the recently published ML-based attacks to break masked implementa-
tions [21,33], we stress the fact that no prior profiling of the mask values was
made during the training phase. The attack results when targeting the first SBox
are shown in Fig. 12.

From Fig. 12, one can conclude that our deep learning based attacks perform
well against masked implementation. In fact, 500 and 1000 traces are respectively
needed for AE and CNN/MLP-based attacks to recover the key. Actually, the
deep learning techniques apply some activation functions as described in Sec. 2.1.
Those functions (e.g. a sigmoid) implicitly perform product combinations of the
data samples which has as an effect the removal of the mask dependency19

exactly like a second-order side channel attack [42].

19 The product combining function maps the leakages of the masked data (Z⊕M) and
the mask (M) into a univariate sample depending on the sensitive data Z.

18



100 101 102 103

Number of queries

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 r

a
n
k 

o
f 

th
e
 c

o
rr

e
ct

 k
e
y

Autoencoder

Convolutional Neural Network

Multilayer Perceptron

Template

Random Forest

LSTM

Fig. 11. Averaged guessing entropy over the first four AES SBoxes (y-axis) according
to an increasing number of traces (x-axis in log scale base 10).

For template attack and RF-based attack more traces are needed to reach a
success rate of 100%.

6 Conclusion and Perspectives

In this paper, to the best of our knowledge, we study for the first time the
application of deep learning techniques in the context of side channel attacks.
The deep learning techniques are based on some nice features suitable to perform
successful key recovery. Mainly, they use different methods of features extraction
(CNN and AE) and exploit time dependency of samples (RNN, LSTM). In order
to evaluate the efficiency of our proposed attacks, we have compared them to
the most commonly used template attack and machine learning attacks. The
comparison between these attacks was conducted on three different data-sets
by evaluating the number of traces required during the attack phase to achieve
a unity guessing entropy with a fixed size of profiling data-set. Our practical
results have shown the overwhelming advantage of our proposal in breaking
both unprotected and protected AES implementations. Indeed, for the different

19



100 101 102 103

Number of queries

0

50

100

150

200

250

300

A
v
e
ra

g
e
 r

a
n
k 

o
f 

th
e
 c

o
rr

e
ct

 k
e
y

Autoencoder

Convolutional Neural Network

Multilayer Perceptron

Template

Random forest

Fig. 12. Evolution of the correct key rank (y-axis) according to an increasing number
of traces (x-axis in log scale base 10) for each attack when targeting the first AES
SBox.

targeted implementations, our attacks outperform the state-of-the-art profiling
side channel attacks.

A future work may consist in targeting other types of protection (e.g. shuf-
fling, combined masking and shuffling) with our proposed DL-based attacks.
Moreover, our work opens avenues for further research of new deep learning
techniques in order to better adapt them to challenge cryptographic implemen-
tations.

References

1. Deep learning website. http://deeplearning.net/tutorial/.

2. Keras library. https://keras.io/.

3. Scikit-learn library. http://scikit-learn.org/stable/.

4. C. Archambeau, É. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template
Attacks in Principal Subspaces. In CHES, volume 4249 of LNCS, pages 1–14.
Springer, October 10-13 2006. Yokohama, Japan.

20

http://deeplearning.net/tutorial/
https://keras.io/
http://scikit-learn.org/stable/


5. T. Bartkewitz and K. Lemke-Rust. Efficient Template Attacks Based on Proba-
bilistic Multi-class Support Vector Machines, pages 263–276. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013.

6. Y. Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1–
127, Jan. 2009.

7. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. Trans. Neur. Netw., 5(2):157–166, Mar. 1994.

8. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York, NY, USA, 1995.

9. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES, volume 3156 of LNCS, pages 16–29. Springer, August 11–13
2004. Cambridge, MA, USA.

10. S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In CHES, volume 2523 of
LNCS, pages 13–28. Springer, August 2002. San Francisco Bay (Redwood City),
USA.

11. Z. Chen and Y. Zhou. Dual-Rail Random Switching Logic: A Countermeasure to
Reduce Side Channel Leakage. In CHES, volume 4249 of LNCS, pages 242–254.
Springer, October 10-13 2006. Yokohama, Japan, http://dx.doi.org/10.1007/
11894063_20.

12. O. Choudary and M. G. Kuhn. Efficient Template Attacks. Cryptology ePrint
Archive, Report 2013/770, 2013. http://eprint.iacr.org/2013/770.

13. J.-S. Coron. Higher Order Masking of Look-Up Tables. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT, volume 8441 of Lecture Notes in Computer
Science, pages 441–458. Springer, 2014.

14. C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
Sept. 1995.

15. L. Deng and D. Yu. Deep learning: Methods and applications. Found. Trends
Signal Process., 7(3&#8211;4):197–387, June 2014.

16. J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate side channel
attacks and leakage modeling. J. Cryptographic Engineering, 1(2):123–144, 2011.

17. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2Nd Edition).
Wiley-Interscience, 2000.

18. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. SpringerVer-
lag, 2003.

19. L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel
analysis with additive and multiplicative maskings. In B. Preneel and T. Takagi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th In-
ternational Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of Lecture Notes in Computer Science, pages 240–255. Springer, 2011.

20. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis. In
CHES, 10th International Workshop, volume 5154 of Lecture Notes in Computer
Science, pages 426–442. Springer, August 10-13 2008. Washington, D.C., USA.

21. R. Gilmore, N. Hanley, and M. O’Neill. Neural network based attack on a masked
implementation of aes. In Hardware Oriented Security and Trust (HOST), 2015
IEEE International Symposium on, pages 106–111, May 2015.

22. M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural
networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
190–198. Curran Associates, Inc., 2013.

21

http://dx.doi.org/10.1007/11894063_20
http://dx.doi.org/10.1007/11894063_20
http://eprint.iacr.org/2013/770


23. A. Heuser and M. Zohner. Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In W. Schindler and S. A. Huss, editors,
COSADE, volume 7275 of LNCS, pages 249–264. Springer, 2012.

24. J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl. Clustering Algorithms
for Non-Profiled Single-Execution Attacks on Exponentiations. IACR Cryptology
ePrint Archive, 2013:438, 2013.

25. S. Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
6(2):107–116, Apr. 1998.

26. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, Nov. 1997.

27. P. Hoogvorst, J.-L. Danger, and G. Duc. Software Implementation of Dual-Rail
Representation. In COSADE, February 24-25 2011. Darmstadt, Germany.

28. G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle.
Machine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering, 1(4):293–302, 2011.

29. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In ICCV, pages 2146–2153. IEEE, 2009.

30. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO,
volume 1666 of LNCS, pages pp 388–397. Springer, 1999.

31. Y. LeCun and Y. Bengio. The handbook of brain theory and neural networks.
chapter Convolutional Networks for Images, Speech, and Time Series, pages 255–
258. MIT Press, Cambridge, MA, USA, 1998.

32. L. Lerman, G. Bontempi, and O. Markowitch. Power analysis attack: an ap-
proach based on machine learning. International Journal of Applied Cryptography,
3(2):97–115, 2014.

33. L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch. A machine learn-
ing approach against a masked AES. In A. Francillon and P. Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
volume 8419 of Lecture Notes in Computer Science, pages 61–75. Springer, 2013.

34. L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F. Standaert. Template
attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In S. Mangard and A. Y. Poschmann, editors, Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers, volume 9064
of Lecture Notes in Computer Science, pages 20–33. Springer, 2015.

35. V. Lomné, E. Prouff, M. Rivain, T. Roche, and A. Thillard. How to Estimate the
Success Rate of Higher-Order Side-ChannelAttacks, pages 35–54. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

36. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1, http:

//www.dpabook.org/.

37. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In Proceedings of the 21th International
Conference on Artificial Neural Networks - Volume Part I, ICANN’11, pages 52–59,
Berlin, Heidelberg, 2011. Springer-Verlag.

38. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1998.

22

http://www.springer.com/
http://www.dpabook.org/
http://www.dpabook.org/


39. C. O’Flynn and Z. D. Chen. Chipwhisperer: An open-source platform for hardware
embedded security research. Cryptology ePrint Archive, Report 2014/204, 2014.
http://eprint.iacr.org/2014/204.

40. K. O’Shea and R. Nash. An introduction to convolutional neural networks. CoRR,
abs/1511.08458, 2015.

41. E. Oswald and S. Mangard. Template Attacks on Masking — Resistance Is Futile.
In M. Abe, editor, CT-RSA, volume 4377 of Lecture Notes in Computer Science,
pages 243–256. Springer, 2007.

42. E. Prouff, M. Rivain, and R. Bevan. Statistical Analysis of Second Order Differ-
ential Power Analysis. IEEE Trans. Computers, 58(6):799–811, 2009.

43. M. Rivain. On the Exact Success Rate of Side Channel Analysis in the Gaussian
Model. In Selected Areas in Cryptography, volume 5381 of LNCS, pages 165–183.
Springer, August 14-15 2008. Sackville, New Brunswick, Canada.

44. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
S. Mangard and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages
413–427. Springer, 2010.

45. L. Rokach and O. Maimon. Data Mining with Decision Trees: Theroy and Appli-
cations. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2008.

46. R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 791–798, New York, NY, USA, 2007. ACM.

47. W. Schindler. Advanced stochastic methods in side channel analysis on block
ciphers in the presence of masking. Journal of Mathematical Cryptology, 2(3):291–
310, October 2008. ISSN (Online) 1862-2984, ISSN (Print) 1862-2976, DOI:
10.1515/JMC.2008.013.

48. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In LNCS, editor, CHES, volume 3659 of LNCS, pages
30–46. Springer, Sept 2005. Edinburgh, Scotland, UK.

49. B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

50. V. Servant, N. Debande, H. Maghrebi, and J. Bringer. Study of a Novel Software
Constant Weight Implementation, pages 35–48. Springer International Publishing,
Cham, 2015.

51. T. C. Silva and L. Zhao. Machine Learning in Complex Networks. Springer, 2016.
52. Y. Souissi, M. Nassar, S. Guilley, J.-L. Danger, and F. Flament. First Principal

Components Analysis: A New Side Channel Distinguisher. In K. H. Rhee and
D. Nyang, editors, ICISC, volume 6829 of Lecture Notes in Computer Science,
pages 407–419. Springer, 2010.

53. F.-X. Standaert, T. Malkin, and M. Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In EUROCRYPT, volume 5479 of LNCS,
pages 443–461. Springer, April 26-30 2009. Cologne, Germany.

54. TELECOM ParisTech SEN research group. DPA Contest (2nd edition), 2009–2010.
http://www.DPAcontest.org/v2/.

55. TELECOM ParisTech SEN research group. DPA Contest (4th edition), 2013–2014.
http://www.DPAcontest.org/v4/.

56. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-
posing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, pages 1096–1103, New
York, NY, USA, 2008. ACM.

23

http://eprint.iacr.org/2014/204
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/


57. J. Weston and C. Watkins. Multi-class support vector machines, 1998.
58. J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural

networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 341–349. Curran
Associates, Inc., 2012.

A Attack Settings

Our proposed deep learning attacks are based on Keras library [2]. We pro-
vide hereafter the architecture and the used parameters for our deep learning
networks.

– Multilayer Perceptron:
• Dense input layer: the number of neurons = the number of samples in

the processed trace
• Dense hidden layer: 20 neurons
• Dense output layer: 256 neurons

– Stacked Auto-Encoder:
• Dense input layer: the number of neurons = the number of samples in

the processed trace
• Dense hidden layer: 100 neurons
• Dense hidden layer: 50 neurons
• Dense hidden layer: 20 neurons
• Dense output layer: 256 neurons

– Convolutionnal Neural Network:
• Convolution layer
∗ Number of filters: 8
∗ Filters length: 16
∗ Activation function: Rectified Linear Unit

• Dropout
• Max pooling layer with a pooling size: 2
• Convolution layer
∗ Number of filters: 8
∗ Filters length: 8
∗ Activation function: tanh(x)

• Dropout
• Dense output layer: 256 neurons

– Long and Short Term Memory:
• LSTM layer: 26 units
• LSTM layer: 26 units
• Dense output layer: 256 neurons

– Random Forest: For this machine learning based attack, we have used the
scikit-learn python library [3].
• Number of trees: 300

In several published works [23,28], authors have noticed the influence of the
parameters chosen for SVM and RF networks on the attack results. When dealing
with deep learning techniques we have observed the same effect. To find the
optimal parameters setup for our practical attacks, a deeply analyzed method is
detailed in the following section.

24



A.1 How to Choose the Optimal Parameters?

When dealing with artificial neural networks, several meta-parameters have to be
tuned (e.g. number of layers, number of neurons on each layer, activation func-
tion, . . . ). One common technique to find the optimal parameters is to use evo-
lutionary algorithms [18] and more precisely the so-called genetic algorithm [38].

At the beginning of the algorithm, a population (a set of individuals with
different genes) is randomly initialized. In our case, an individual is a list of
the parameters we want to estimate (e.g. number of layers, number of neurons
on each layer, activation function, . . . ) and the genes are the corresponding
values. Then, the performance of each individual is evaluated using what is
called a fitness function. In our context, the fitness function is the guessing
entropy outputted by the attack. Said, differently, for each set of parameters
we perform the attack and we note the guessing entropy obtained. Only the
individuals that achieve good guessing entropy scores are kept. Their genes are
mutated and mixed to generate a better population. This process is repeated
until a satisfying fitness is achieved (i.e. a guessing entropy equals one).

25


	Breaking Cryptographic Implementations Using Deep Learning Techniques

