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Abstract

We prove that every key agreement protocol in the random oracle model in which the honest
users make at most n queries to the oracle can be broken by an adversary who makes O(n2)
queries to the oracle. This improves on the previous Ω̃(n6) query attack given by Impagliazzo
and Rudich (STOC ’89) and resolves an open question posed by them.

Our bound is optimal up to a constant factor since Merkle proposed a key agreement protocol
in 1974 that can be easily implemented with n queries to a random oracle and cannot be broken
by any adversary who asks o(n2) queries.
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1 Introduction

In the 1970’s Diffie, Hellman, and Merkle [Mer74, DH76, Mer78] began to challenge the accepted
wisdom that two parties cannot communicate confidentially over an open channel without first
exchanging a secret key using some secure means. The first such protocol (at least in the open
scientific community) was proposed by Merkle in 1974 [Mer74] for a course project in Berkeley.
Even though the course’s instructor rejected the proposal, Merkle continued working on his ideas
and discussing them with Diffie and Hellman, leading to the papers [DH76,Mer78]. Merkle’s original
key exchange protocol was extremely simple and can be directly formalized and implemented using
a random oracle1 as follows:

Protocol 1.1 (Merkle’s 1974 Protocol using Random Oracles). Let n be the security parameter
and H : [n2] 7→ {0, 1}n be a function chosen at random accessible to all parties as an oracle. Alice
and Bob execute the protocol as follows.

1. Alice chooses 10n distinct random numbers x1, . . . , x10n from [n2] and sends a1, . . . , a10n to
Bob where ai = H(xi).

2. Similarly, Bob chooses 10n random numbers y1, . . . , y10n in [n2] and sends b1, . . . , b10n to Alice
where bj = H(yj). (This step can be executed in parallel with Alice’s first step.)

3. If there exists any ai = bi among the exchanged strings, Alice and Bob let (i, j) to be the
lexicographically first index of such pair; Alice takes xi as her key and Bob takes yj as his
key. If no such (i, j) pair exits, they both take 0 as the agreed key.

It is easy to see that with probability at least 1−n4/2n, the random function H : [n2] 7→ {0, 1}n
is injective, and so any ai = bi will lead to the same key xi = yj used by Alice and Bob. In addition,
the probability of not finding a “collision” ai = bj is at most (1− 10/n)10n ≤ (1/e)100 < 2−100 for
all n ≥ 10. Moreover, when there is a collision ai = bj , Eve has to essentially search the whole
input space [n2] to find the preimage xi = yj of ai = bj (or, more precisely, make n2/2 calls to H(·)
on average).

We note that in his 1978 paper [Mer78] Merkle described a different variant of a key agreement
protocol by having Alice send to Bob n “puzzles” a1, . . . , an such that each puzzle ai takes ≈ n
“time” to solve (where the times is modeled as the number of oracle queries), and the solver learns
some secret xi. The idea is that Bob would choose at random which puzzle i ∈ [n] to solve, and
so spend ≈ n time to learn xi which he can then use as a shared secret with Alice after sending
a hash of xi to Alice so that she knows which secret Bob chose. On the other hand, Eve would
need to solve almost all the puzzles to find the secret, thus spending ≈ n2 time. These puzzles
can indeed be implemented via a random oracle H : [n] × [n] 7→ {0, 1}n × {0, 1}m as follows. The
i’th puzzle with hidden secret x ∈ {0, 1}m can be obtained by choosing and k ← [n] at random
and getting ai = (H1(i, k), H2(i, k)⊕x) where ⊕ denotes bitwise exclusive OR, H1(·, ·) denotes the
first n bits of H’s output, and H2(·, ·) denotes the last m bits of H’s output. Now, given puzzles
P1 = (h11, h

2
2), . . . , Pn = (hn1 , h

n
2 ), Bob takes a random puzzle Pj , solves it by asking H(j, k) for all

k ∈ [n] to get H(j, k) = (hj1, h2) for some h2, and then he retrieves the puzzle solution x = h2⊕hj2.
1In this work, random oracles denote any randomized oracle O : {0, 1}∗ 7→ {0, 1}∗ such that O(x) is independent

of O({0, 1}∗ \{x}) for every x (see Definition 2.2). The two protocols of Merkle we describe here can be implemented
using a length-preserving random oracle (by cutting the inputs and the output to the right length). Our negative
results, on the other hand, apply to any random oracle.
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One problem with Merkle’s protocol is that its security was only analyzed in the random oracle
model which does not necessarily capture security when instantiated with a cryptographic one-way
or hash function [CGH04]. Biham, Goren, and Ishai [BGI08] took a step towards resolving this
issue by providing a security analysis for Merkle’s protocol under concrete complexity assumptions.
In particular, they proved that assuming the existence of one-way functions that cannot be inverted
with probability more than 2−αn by adversaries running in time 2αn for α ≥ 1/2− δ, there is a key
agreement protocol in which Alice and Bob run in time n but any adversary whose running time
is at most n2−10δ has o(1) chance of finding the secret.

Perhaps a more serious issue with Merkle’s protocol is that it only provides a quadratic gap
between the running time of the honest parties and the adversary. Fortunately, not too long after
Merkle’s work, Diffie and Hellman [DH76] and later Rivest, Shamir, and Adleman [RSA78] gave
constructions for key agreement protocols that are conjectured to have super-polynomial (even
subexponential) security and are of course widely used to this day. But because these and later
protocols are based on certain algebraic computational problems, they could perhaps be vulnerable
to unforseen attacks using this algebraic structure. It remained, however, an important open
question to show whether there exist key agreement protocols with super-polynomial security that
use only a random oracle.2 The seminal paper of Impagliazzo and Rudich [IR89] answered this
question negatively by showing that every key agreement protocol, even in its full general form that
is allowed to run in polynomially many rounds, can be broken by an adversary asking O(n6 log n)
queries if the two parties ask n queries in the random oracle model.3 A random oracle is in particular
a one-way function (with high probability)4, and thus an important corollary of [IR89]’s result is
that there is no construction of key agreement protocols based on one-way functions with a proof
of super-polynomial security that is of the standard black-box type (i.e., the implementation of the
protocol uses the one-way function as an oracle, and its proof of security uses the one-way function
and any adversary breaking the protocol also as oracles).5

Question and Motivation. Impagliazzo and Rudich [IR89, Section 8] mention as an open ques-
tion (which they attribute to Merkle) to find out whether their attack can be improved to O(n2)
queries (hence showing the optimality of Merkle’s protocol in the random oracle model) or there
exist key agreement protocols in the random oracle model with ω(n2) security. Beyond just being a
natural question, it also has some practical and theoretical motivations. The practical motivation
is that protocols with sufficiently large polynomial gap could be secure enough in practice—e.g., a
key agreement protocol taking 109 operations to run and (109)6 = 1054 operations to break could
be good enough for many applications.6 In fact, as was argued by Merkle himself [Mer74], as

2This is not to be confused with some more recent works such as [BR93], that combine the random oracle model
with assumptions on the intractability of other problems such as factoring or the RSA problem to obtain more efficient
cryptographic constructions.

3More accurately, [IR89] gave an O(m6 logm)-query attack where m is the maximum of the number of queries n
and the number of communication rounds, though we believe their analysis could be improved to an O(n6 logn)-query
attack. For the sake of simplicity, when discussing [IR89]’s results we will assume that m = n, though for our result
we do not need this assumption.

4The proof of this statement for the case of non-uniform adversaries is quite nontrivial; see [GGKT05] for a proof.
5This argument applies to our result as well, and of course extends to any other primitive that is implied by

random oracles (e.g., collision-resistant hash functions) in a black-box way.
6These numbers are just an example, and in practical applications the constant terms will make an important

difference; however we note that these particular constants are not ruled out by [IR89]’s attack but are ruled out by
ours by taking number of operations to mean the number of calls to the oracle.
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technology improves and honest users can afford to run more operations, such polynomial gaps
only become more useful since the ratio between the work required by the attacker and the honest
user will grow as well. Thus, if known algebraic key agreement protocols were broken, one might
look to polynomial-security protocol such as Merkle’s for an alternative. Another motivation is
theoretical— Merkle’s protocol has very limited interaction (consisting of one round in which both
parties simultaneously broadcast a message) and in particular it implies a public key encryption
scheme. It is natural to ask whether more interaction can help achieve some polynomial advantage
over this simple protocol. Brakerski et al. [BKSY11] show a simple O(n2)-query attack for pro-
tocols with perfect completeness based on a random oracles,7 where the probability is over both
the oracle and parties’ random seeds. In this work we focus on the main question of [IR89] in full
fledged form.

1.1 Our Results

In this work we answer the above question of [IR89], by showing that every protocol in the random
oracle model where Alice and Bob make n oracle queries can be broken with high probability by
an adversary making O(n2) queries. That is, we prove the following:

Theorem 1.2 (Main Theorem). Let Π be a two-party protocol in the random oracle model such that
when executing Π the two parties Alice and Bob make at most n queries each, and their outputs are
identical with probability at least ρ. Then, for every 0 < δ < ρ, there is an eavesdropping adversary
Eve making O(n2/δ2) queries to the oracle whose output agrees with Bob’s output with probability
at least ρ− δ.

To the best of our knowledge, no better bound than the Õ(n6)-query attack of [IR89] was
previously known even in the case where one does not assume the one-way function is a random
oracle (which would have made the task of proving a negative result easier).

In the original publication of this work [BMG09], the following technical result (Theorem 1.3)
was implicit in the proof of Theorem 1.2. Since this particular result has found uses in subsequent
works to the original publication of this work [BMG09], here we state and prove it explicitly. This
theorem, roughly speaking, asserts that by running the attacker of Theorem 1.2 the “correlation”
between the “views” of Alice and Bob (conditioned on Eve’s knowledge) remains close to zero
at all times. The view of a party consists of the information they posses at any moment during
the execution of the protocol: their private randomness, the public messages, and their private
interaction with the oracle.

Theorem 1.3 (Making Views almost Independent—Informal). Let Π be a two-party protocol in
the random oracle model such that when executing Π the two parties Alice and Bob make at most n
oracle queries each. Then for any α, β < 1/10 there is an eavesdropper Eve making poly(n/(αβ))
queries to the oracle such that with probability at least 1−α the following holds at the end of every
round: the joint distribution of Alice’s and Bob’s views so far conditioned on Eve’s view is β-close
to being independent of each other.

See Section 4 for the formal statement and proof of Theorem 1.3.

7We are not aware of any perfectly complete n-query key agreement protocol in the random oracle with ω(n)
security. In other words, it seems conceivable that all such protocols could be broken with a linear number of queries.
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1.2 Related Work

Quantum-Resilient Key Agreement. In one central scenario in which some algebraic key
agreement protocols will be broken—the construction of practical quantum computers— Merkle’s
protocol will also be broken with linear oracle queries using Grover’s search algorithm [Gro96].
In the original publication of this work we asked whether our O(n2)-query classical attack could
lead to an O(n) quantum attack against any classical protocol (where Eve accesses the random
oracle in a superposition). We note that using quantum communication there is an information
theoretically secure key agreement protocol [BBE92]. Brassard and Salvail [BS08] (independently
observed by [BGI08]) gave a quantum version of Merkle’s protocol, showing that Alice and Bob
can use quantum computation (but classical communication) to obtain a key agreement protocol
with super-linear n3/2 security in the random oracle model against quantum adversaries. Finally,
Brassard et al. [BHK+11] resolved our question negatively by presenting a classical protocol in
the random oracle model with super linear security Ω(n3/2−ε) for arbitrary small constant ε.

Attacks in Small Parallel Time. Mahmoody, Moran, and Vadhan [MMV11] showed how to
improve the round complexity of the attacker of Theorem 1.2 to n (which is optimal) for the case of
one-message protocols, where a round here refers to a set of queries that are asked to the oracle in
parallel.8 Their result rules out constructions of “time-lock puzzles” in the parallel random oracle
model in which the polynomial-query solver needs more parallel time (i.e., rounds of parallel queries
to the random oracle) than the puzzle generator to solve the puzzle. As an application back to
our setting, [MMV11] used the above result and showed that every n-query (even multi-round) key
agreement protocol can be broken by O(n3) queries in only n rounds of oracle queries, improving
the Ω(n2)-round attack of our work by a factor of n. Whether an O(n)-round O(n2)-query attack
is possible remains as an intriguing open question.

Black-Box Separations and the Power of Random Oracle. The work of Impagliazzo and
Rudich [IR89] laid down the framework for the field of black-box separations. A black-box separation
of a primitive Q from another primitive P rules out any construction of Q from P as long as it
treats the primitive P and the adversary (in the security proof) as oracles. We refer the reader to
the excellent survey by Reingold et al. [RTV04] for the formal definition and its variants. Due to
the abundance of black-box techniques in cryptography, a black-box separation indicates a major
disparity between how hard it is to achieve P vs. Q, at least with respect to black-box techniques.
The work of [IR89] employed the so called “oracle separation” method to derive their black-box
separation. In particular, they showed that relative to the oracle O = (R,PSPACE) in which R
is a random oracle one-way functions exist (with high probability) but secure key agreement does
not. This existence of such an oracle implies a black-box separation.

The main technical step in the proof of [IR89] is to show that relative to a random oracle R,
any key agreement protocol could be broken by an adversary who is computationally unbounded
and asks at most S = poly(n) number of queries (where n is the security parameter). The smallest
such polynomial S for any construction C could be considered as a quantitative black-box security
for C in the random oracle model. This is indeed the setting of our paper, and we study the optimal
black-box security of key agreement in the random oracle model. Our Theorem 1.2 proves that

8For example, a non-adaptive attacker who prepares all of its oracle queries and then asks them in one shot, has
round complexity one.
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Θ(n2) is the optimal security one can achieve for an n-query key agreement protocol in the random
oracle model. The techniques used in the proof of Theorem 1.2 have found applications in the
contexts of black-box separations and black-box security in the random oracle model (see, e.g.,
[KSY11,BKSY11,MP12]). In the following we describe some of the works that focus on the power
of random oracles in secure two-party computation.

Dachman-Soled et al. [DSLMM11] were the first to point out that results implicit in our proof
of Theorem 1.2 in the original publication of this work [BMG09] could be used to show the existence
of eavesdropping attacks that gather enough information from the oracle in a way that conditioned
on this information the views of Alice and Bob become “close” to being independent (see Lemma
5 of [DSLMM11]). Such results were used in [DSLMM11], [MMP14], and [HHRS07] to explore
the power of random oracles in secure two-party computation. Dachman-Soled et al. showed that
“optimally-fair” coin tossing protocols [Cle86] cannot be based on one-way functions with n input
and n output bits in a black-box way if the protocol has o(n/ log n) rounds.

Mahmoody, Maji, and Prabhakaran [MMP14] proved that random oracles are useful for secure
two-party computation of finite (or at most polynomial-size domain) deterministic functions only
as the commitment functionality. Their results showed that “non-trivial” functions can not be
computed securely by a black-box use of one-way functions.

Haitner, Omri, and Zarosim [HOZ13] studied input-less randomized functionalities and showed
that a random oracle9 is, to a large extent, useless for such functionalities as well. In particular, it
was shown that for every protocol Π in the random oracle model, and every polynomial p(·), there
is a protocol in the no-oracle model that is “1/p(·)-close” to Π. [HOZ13] proved this result by using
the machinery developed in the original publication of this work (e.g., the graph characterization
of Section 3.3.2) and simplified some of the steps of the original proof. [HOZ13] showed how to use
such lower-bounds for the input-less setting to prove black-box separations from one-way functions
for “differentially private” two-party functionalities for the with-input setting.

1.3 Our Techniques

The main technical challenge in proving our main result is the issue of dependence between the
executions of the two parties Alice and Bob in a key agreement protocol. At first sight, it may
seem that a computationally unbounded attacker that monitors all communication between Alice
and Bob will trivially be able to find out their shared key. But the presence of the random oracle
allows Alice and Bob to correlate their executions even without communicating (which is indeed
the reason that Merkle’s protocol achieves nontrivial security). Dealing with such correlations
is the cause of the technical complexity in both our work and the previous work of Impagliazzo
and Rudich [IR89]. We handle this issue in a different way than [IR89]. On a very high level
our approach can be viewed as using more information about the structure of these correlations
than [IR89] did. This allows us to analyze a more efficient attacking algorithm that is more frugal
with the number of queries it uses than the attacker of [IR89]. Below we provide a more detailed
(though still high level) exposition of our technique and its relation to [IR89]’s technique.

We now review [IR89]’s attack (and its analysis) and particularly discuss the subtle issue of
dependence between Alice and Bob that arises in both their work and ours. However, no result
of this section is used in the later sections, and so the reader should feel free at any time to skip
ahead to the next sections that contain our actual attack and its analysis.

9 [HOZ13] proved this result for a larger class of oracles, see [HOZ13] for more details.
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1.3.1 The Approach of [IR89]

Consider a protocol that consists of n rounds of interaction, where each party makes exactly one
oracle query before sending its message. [IR89] called protocols of this type “normal-form protocols”
and gave an Õ(n3) attack against them (their final result was obtained by transforming every
protocol into a normal-form protocol with a quadratic loss of efficiency). Even though without loss
of generality the attacker Eve of a key agreement protocol can defer all of her computation till after
the interaction between Alice and Bob is finished, it is conceptually simpler in both [IR89]’s case
and ours to think of the attacker Eve as running concurrently with Alice and Bob. In particular,
the attacker Eve of [IR89] performed the following operations after each round i of the protocol:

• If the round i is one in which Bob sent a message, then at this point Eve samples 1000n log n
random executions of Bob from the distribution D of Bob’s executions that are consistent
with the information that Eve has at that moment (which consists of the communication
transcript and previous oracle answers). That is, Eve samples a uniformly random tape for
Bob and uniformly random query answers subject to being consistent with Eve’s information.
After each time she samples an execution, Eve asks the oracle all the queries that are asked
during this execution and records the answers. (Generally, the true answers will be different
from Eve’s guessed answers when sampling the execution.) If the round i is one in which
Alice sent a message, then Eve does similarly by changing the role of Alice and Bob.

Overall Eve will sample Õ(n2) executions making a total of Õ(n3) queries. It’s not hard to
see that as long as Eve learns all of the intersection queries (queries asked by both Alice and Bob
during the execution) then she can recover the shared secret with high probability. Thus the bulk
of [IR89]’s analysis was devoted to showing the following claim.

Claim 1.4. With probability at least 0.9 Eve never fails, where we say that Eve fails at round i if
the query made in this round by, say, Alice was asked previously by Bob but not by Eve.

At first look, it may seem that one could easily prove Claim 1.4. Indeed, Claim 1.4 will follow
by showing that at any round i, the probability that Eve fails in round i for the first time is at most
1/(10n). Now all the communication between Alice and Bob is observed by Eve, and if no failure
has yet happened then Eve has also observed all the intersection queries so far. Because the answers
for non-intersection queries are completely random and independent from one another it seems that
Alice has no more information about Bob than Eve does, and hence if the probability that Alice’s
query q was asked before by Bob is more than 1/(10n) then this query q has probability at least
1/(10n) to appear in each one of Eve’s sampled executions of Bob. Since Eve makes 1000n log n
such samples, the probability that Eve misses q would be bounded by (1− 1

10n)1000n logn � 1/(10n).

The Dependency Issue. When trying to turn the above intuition into a proof, the assumption
that Eve has as much information about Bob as Alice does translates to the following statement:
conditioned on Eve’s information, the distributions of Alice’s view and Bob’s view are independent
from one another.10 Indeed, if this statement were true then the above paragraph could have been
easily translated into a proof that [IR89]’s attacker is successful, and it wouldn’t have been hard to

10Readers familiar with the setting of communication complexity may note that this is analogous to the well known
fact that conditioning on any transcript of a 2-party communication protocol results in a product distribution (i.e.,
combinatorial rectangle) over the inputs. However, things are different in the presence of a random oracle.
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optimize this attacker to achieve O(n2) queries. Alas, this statement is false. Intuitively the reason
is the following: even the fact that Eve has not missed any intersection queries is some nontrivial
information that Alice and Bob share and creates dependence between them.11

Impagliazzo and Rudich [IR89] dealt with this issue by a “charging argument”, where they
showed that such dependence can be charged in a certain way to one of the executions sampled by
Eve, in a way that at most n samples can be charged at each round (and the rest of Eve’s samples
are distributed correctly as if the independence assumption was true). This argument inherently
required sampling at least n executions (each of n queries) per round, resulting in an Ω(n3) attack.

1.3.2 Our Approach

We now describe our approach and how it differs from the previous proof of [IR89]. The discussion
below is somewhat high level and vague, and glosses over some important details. Again, the reader
is welcome to skip ahead at any time to Section 3 that contains the full description of our attack
and does not depend on this section in any way. Our attacking algorithm follows the same general
outline as that of [IR89] but has two important differences:

1. One quantitative difference is that while our attacker Eve also computes a distribution D of
possible executions of Alice and Bob conditioned on her knowledge, she does not sample full
executions from D; rather, she computes whether there is any query q ∈ {0, 1}∗ that has
probability more than, say, 1/(100n) of being in D and makes only such heavy queries.

Intuitively, since Alice and Bob make at most 2n queries, the total expected number of heavy
queries (and hence the query complexity of Eve) is bounded by O(n2). The actual analysis is
more involved since the distribution D keeps changing as Eve learns more information through
the messages she observes and oracle answers she receives.

2. The qualitative difference is that here we do not consider the same distribution D that was
considered by [IR89]. Their attacker to some extent “pretended” that the conditional distri-
butions of Alice and Bob are independent from one another and only considered one party in
each round. In contrast, we define our distribution D to be the joint distribution of Alice and
Bob, where there could be dependencies between them. Thus, to sample from our distribution
D one would need to sample a pair of executions of Alice and Bob (random tapes and oracle
answers) that are consistent with one another and Eve’s current knowledge.

The main challenge in the analysis is to prove that the attack is successful (i.e., that Claim 1.4
above holds) and in particular that the probability of failure at each round (or more generally, at
each query of Alice or Bob) is bounded by, say, 1/(10n). Once again, things would have been easy
if we knew that the distribution D of the possible executions of Alice and Bob conditioned on Eve’s
knowledge is a product distribution, and hence Alice has no more information on Bob than Eve
has. While this is not generally true, we show that in our attack this distribution is close to being
a product distribution, in a precise sense.

11As a simple example for such dependence consider a protocol where in the first round Alice chooses x (which is
going to be the shared key) to be either the string 0n or 1n at random, queries the oracle H at x and sends y = H(x)
to Bob. Bob then makes the query 1n and gets y′ = H(1n). Now even if Alice chose x = 0n and hence Alice and
Bob have no intersection queries, Bob can find out the value of x just by observing that y′ 6= y. Still, an attacker
must ask a non-intersection query such as 1n to know if x = 0n or x = 1n.
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At any point in the execution, fix Eve’s current information about the system and define a bipar-
tite graph G whose left-side vertices correspond to possible executions of Alice that are consistent
with Eve’s information and right-side vertices correspond to possible executions of Bob consistent
with Eve’s information. We put an edge between two executions A and B if they are consistent
with one another and moreover if they do not represent an execution in which Eve has already
failed (i.e., there is no intersection query that is asked in both executions A and B but not by Eve).
Roughly speaking, the distribution D that our attacker Eve considers can be thought of as choosing
a uniformly random edge in the graph G. (Note that the graph G and the distribution D change
at each point that Eve learns some new information about the system.) If G were the complete
bipartite clique then D would have been a product distribution. Although G can rarely be the
complete graph, what we show is that G is still dense in the sense that each vertex is connected to
most of the vertices on the other side. Relying on the density of this graph, we show that Alice’s
probability of hitting a query that Bob asked before is at most twice the probability that Eve does
so if she chooses the most likely query based on her knowledge.

The bound on the degree is obtained by showing that G can be represented as a disjointness
graph, where each vertex u is associated with a set S(u) (from an arbitrarily large universe) and
there is an edge between a left-side vertex u and a right-side vertex v if and only if S(u)∩S(v) = ∅.
The set S(u) corresponds to the queries made in the execution corresponding to u that are not asked
by Eve. The definition of the graph G implies that |S(u)| ≤ n for all vertices u. The definition of
our attacking algorithm implies that the distribution obtained by picking a random edge e = (u, v)
and outputting S(u)∪ S(v) is light in the sense that there is no element q in the universe that has
probability more than 1/(10n) of being in a set chosen from this distribution. We show that these
conditions imply that each vertex is connected to most of the vertices on the other side.

2 Preliminaries

We use bold fonts to denote random variables. By Q ← Q we indicate that Q is sampled from
the distribution of the random variable Q. By (x,y) we denote a joint distribution over random
variables x,y. By x ≡ y we denote that x and y are identically distributed. For jointly distributed
(x,y), by (x | y = y) we denote the distribution of x conditioned on y = y. When it is clear
from the context we might simply write (x | y) instead of (x | y = y). By (x × y) we denote a
product distribution in which x and y are sampled independently. For a finite set S, by x ← S
we denote that x is sampled from S uniformly at random. By Supp(x) we denote the support set
of the random variable x defined as Supp(x) = {x | Pr[x = x] > 0}. For any event E, by ¬E we
denote the complement of the event E.

Definition 2.1. A partial function F is a function F : D 7→ {0, 1}∗ defined over some domain
D ⊆ {0, 1}∗. We call two partial functions F1, F2 with domains D1, D2 consistent if F1(x) = F2(x)
for every x ∈ D1 ∩D2. (In particular, F1 and F2 are consistent if D1 ∩D2 = ∅.)

In previous work random oracles are defined either as Boolean functions [IR89] or length-
preserving functions [BR93]. In this work we use a general definition that captures both cases by
only requiring the oracle answers to be independent. Since our goal is to give attacks in this model,
using this definition makes our results more general and applicable to both scenarios.

Definition 2.2 (Random Oracles). A random oracle H(·) is a random variable whose values are
functions H : {0, 1}∗ 7→ {0, 1}∗ such that H(x) is distributed independently of H({0, 1}∗ \ {x}) for
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all x ∈ {0, 1}∗ and that Pr[H(x) = y] is a rational number for every pair (x, y).12 For any finite
partial function F , by PrH[F ] we denote the probability that the random oracle H is consistent
with F . Namely, PrH[F ] = PrH←H[F ⊆ H] and PrH[∅] = 1 where F ⊆ H means that the partial
function F is consistent with H.

Remark 2.3 (Infinite vs. Finite Random Oracles). In this work, we will always work with finite
random oracles which are only queried on inputs of length n ≤ poly(κ) where κ is a (security)
parameter given to parties. Thus, we only need a finite variant of Definition 2.2. However, in
case of infinite random oracles (as in Definition 2.2) we need a measure space over the space of
full infinite oracles that is consistent with the finite probability distributions of H(·) restricted to
inputs {0, 1}n for all n = 1, 2, . . . . By Caratheodory’s extension theorem, such measure space exists
and is unique (see Theorem 4.6 of [Hol15]).

Since for every random oracle H(·) and fixed x the random variable H(x) is independent of H(x′)
for all x′ 6= x, we can use the following characterization of PrH[F ] for every F ⊆ {0, 1}∗ × {0, 1}∗.
Here we only state and use this lemma for finite sets.

Proposition 2.4. For every random oracle H(·) and every finite set F ⊂ {0, 1}∗×{0, 1}∗ we have

Pr
H

[F ] =
∏

(x,y)∈F

Pr[H(x) = y].

Now we derive the following lemma from the above proposition.

Lemma 2.5. For consistent finite partial functions F1, F2 and random oracle H it holds that

Pr
H

[F1 ∪ F2] =
PrH[F1] · PrH[F2]

PrH[F1 ∩ F2]
.

Proof. Since F1 and F2 are consistent, we can think of F = F1∪F2 as a partial function. Therefore,
by Proposition 2.4 and the inclusion-exclusion principle we have:

Pr
H

[F1 ∪ F2] =
∏

(x,y)∈F1∪F2

Pr[H(x) = y]

=

∏
(x,y)∈F1

Pr[H(x) = y] ·
∏

(x,y)∈F2
Pr[H(x) = y]∏

(x,y)∈F1∩F2
Pr[H(x) = y]

=
PrH[F1] · PrH[F2]

PrH[F1 ∩ F2]
.

Lemma 2.6 (Lemma 6.4 in [IR89]). Let E be any event defined over a random variable x, and let
x1,x2, . . . be a sequence of random variables all determined by x. Let D be the event defined over
(x1, . . . ) that holds if and only if there exists some i ≥ 1 such that Pr[E | x1, . . . , xi] ≥ λ. Then
Pr[E | D] ≥ λ.

12Our results extend to the case where the probabilities are not necessarily rational numbers, however, since every
reasonable candidate random oracle we are aware of satisfies this rationality condition, and it avoids some technical
subtleties, we restrict attention to oracles that satisfy it. In Section 4.2 we show how to remove this restriction.
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Lemma 2.7. Let E be any event defined over a random variable x, and let x1,x2, . . . be a sequence
of random variables all determined by x. Suppose Pr[E] ≤ λ and λ = λ1 · λ2. Let D be the event
defined over (x1, . . . ) that holds if and only if there exists some i ≥ 1 such that Pr[E | x1, . . . , xi] ≥
λ1. Then it holds that Pr[D] ≤ λ2.

Proof. Lemma 2.6 shows that Pr[E | D] ≥ λ1. Now we prove the contrapositive of Lemma 2.7. If
Pr[D] > λ2, then we would get Pr[E] ≥ Pr[E ∧D] ≥ Pr[D] · Pr[E | D] > λ1 · λ2 = λ.

2.1 Statistical Distance

Definition 2.8 (Statistical Distance). By ∆(x,y) we denote the statistical distance between ran-
dom variables x,y defined as ∆(x,y) = 1

2 ·
∑

z |Pr[x = z]− Pr[y = z]|. We call random variables
x and y ε-close, denoted by x ≈ε y, if ∆(x,y) ≤ ε.

We use the following useful well-known lemmas about statistical distance.

Lemma 2.9. ∆(x,y) = ε if and only if either of the following holds:

1. For every (even randomized) function D it holds that Pr[D(x) = 1]− Pr[D(y) = 1] ≤ ε.

2. For every event E it holds that Prx[E]− Pry[E] ≤ ε.

Moreover, if ∆(x,y) = ε, then there is a deterministic (detecting) Boolean function D that achieves
Pr[D(x) = 1]− Pr[D(y) = 1] = ε.

Lemma 2.10. It holds that ∆((x, z), (y, z)) = Ez←z ∆((x | z), (y | z)).

Lemma 2.11. If ∆(x,y) ≤ ε1 and ∆(y, z) ≤ ε2, then ∆(x, z) ≤ ε1 + ε2.

Lemma 2.12. ∆((x1,x2), (y1,y2)) ≥ ∆(x1,y1).

We use the convention for the notation ∆(·, ·) that whenever Pr[x ∈ E] = 0 for some event E,
we let ∆((x | E),y) = 1 for every random variable y.

Lemma 2.13. Suppose x,y are finite random variables, and suppose G is some event defined over
Supp(x). Then ∆(x,y) ≤ Prx[G] + ∆((x | ¬G),y).

Proof. Let δ = ∆(x,y). Let g be a Boolean random variable jointly distributed with x as follows:
g = 1 if and only if x ∈ G. Suppose y is sampled independently of (x,g) (and so (y,g) ≡ (y×g)).
By Lemmas 2.12 and 2.10 we have:

∆(x,y) ≤ ∆((x,g), (y,g))

= E
g←g

∆((x | g), (y | g))

= E
g←g

∆((x | g),y)

= Pr[g = 1] ·∆((x | g = 1),y) + Pr[g = 0] ·∆((x | g = 0),y)

≤ Pr[g = 1] + ∆((x | g = 0),y)

= Pr
x

[G] + ∆((x | ¬G),y).
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Definition 2.14 (Key Agreement). A key agreement protocol consists of two interactive polynomial-
time probabilistic Turing machines (A,B) that both get 1n as security parameter, each get secret
randomness rA, rB, and after interacting for poly(n) rounds A outputs sA and B outputs sB. We
say a key agreement scheme (A,B) has completeness ρ if Pr[sA = sB] ≥ ρ(n). For an arbitrary ora-
cle O, we define key agreement protocols (and their completeness) relative to O by simply allowing
A and B to be efficient algorithms relative to O.

Security of Key Agreement Protocols. It can be easily seen that no key agreement protocol
with completeness ρ > 0.9 could be statistically secure, and that there is always a computationally
unbounded eavesdropper Eve who can guess the shared secret key sA = sB with probability at
least 1/2 + neg(n). In this work we are interested in statistical security of key agreement protocols
in the random oracle model. Namely, we would like to know how many oracle queries are required
to break a key agreement protocol relative to a random oracle.

3 Proving the Main Theorem

In this section we prove the next theorem which implies our Theorem 1.2 as special case.

Theorem 3.1. Let Π be a two-party interactive protocol between Alice and Bob using a random
oracle H (accessible by everyone) such that:

• Alice uses local randomness rA, makes at most nA queries to H and at the end outputs sA.

• Bob uses local randomness rB, makes at most nB queries to H and at the end outputs sB.

• Pr[sA = sB] ≥ ρ where the probability is over the choice of (rA, rB, H)← (rA, rB,H).

Then, for every 0 < δ < ρ, there is a deterministic eavesdropping adversary Eve who only gets access
to the public sequence of messages M sent between Alice and Bob, makes at most 400 · nA · nB/δ2
queries to the oracle H and outputs sE such that Pr[sE = sB] ≥ ρ− δ.

3.1 Notation and Definitions

In this subsection we give some definitions and notations to be used in the proof of Theorem 3.1.
W.l.o.g we assume that Alice, Bob, and Eve will never ask an oracle query twice. Recall that Alice
(resp. Bob) asks at most nA (resp. nB) oracle queries.

Rounds. Alice sends her messages in odd rounds and Bob sends his messages in even rounds.
Suppose i = 2j− 1 and it is Alice’s turn to send the message mi. This round starts by Alice asking
her oracle queries and computing mi, then Alice sends mi to Bob, and this round ends by Eve
asking her (new) oracle queries based on the messages sent so far M i = [m1, . . . ,mi]. Same holds
for i = 2j by changing the role of Alice and Bob.
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Queries and Views. ByQiA we denote the set of oracle queries asked by Alice by the end of round
i. By P iA we denote the set of oracle query-answer pairs known to Alice by the end of round i (i.e.,
P iA =

{
(q,H(q)) | q ∈ QiA

}
). By V i

A we denote the view of Alice by the end of round i. This view
consists of: Alice’s randomness rA, exchanged messages M i as well as oracle query-answer pairs P iA
known to Alice so far. By QiB, P

i
B, V

i
B (resp. QiE , P

i
E , V

i
E) we denote the same variables defined for

Bob (resp. Eve). Note that V i
E only consists of (M i, P iE) since Eve does not use any randomness.

We also use Q(·) as an operator that extracts the set of queries from set of query-answer pairs or
views; namely, Q(P ) = {q | ∃ a, (q, a) ∈ P} and Q(V ) = {q | the query q is asked in the view V }.

Definition 3.2 (Heavy Queries). For a random variable V whose samples V ← V are sets of
queries, sets of query-answer pairs, or views, we say a query q is ε-heavy for V if and only if
Pr[q ∈ Q(V)] ≥ ε.

Executions and Distributions A (full) execution of Alice, Bob, and Eve can be described by
a tuple (rA, rB, H) where rA denotes Alice’s random tape, rB denotes Bob’s random tape, and
H is the random oracle (note that Eve is deterministic). We denote by E the distribution over
(full) executions that is obtained by running the algorithms for Alice, Bob and Eve with uniformly
chosen random tapes rA, rB and a uniformly sampled random oracle H. By PrE [P

i
A] we denote the

probability that a full execution of the system leads to Pi
A = P iA for a given P iA. We use the same

notation also for other components of the system (by treating their occupance as events) as well.
For a sequence of i messages M i = [m1, . . . ,mi] exchanged between the two parties and a set of

query-answer pairs (i.e., a partial function) P , by V(M i, P ) we denote the joint distribution over
the views (V i

A, V
i
B) of Alice and Bob in their own (partial) executions up to the point in the system

in which the i’th message is sent (by Alice or Bob) conditioned on: the transcript of messages
in the first i rounds being equal to M i and H(q) = a for all (q, a) ∈ P . Looking ahead in the
proof, the distribution V(M i, P ) would be the conditional distribution of Alice’s and Bob’s views
in eyes of the attacker Eve who knows the public messages and has learned oracle query-answer
pairs described in P . For (M i, P ) such that PrE [M

i, P ] > 0, the distribution V(M i, P ) can be
sampled by first sampling (rA, rB, H) uniformly at random conditioned on being consistent with
(M i, P ) and then deriving Alice’s and Bob’s views V i

A, V
i
B from the sampled (rA, rB, H).

For (M i, P ) such that PrE [M
i, P ] > 0, the event Good(M i, P ) is defined over the distribution

V(M i, P ) and holds if and only if QiA ∩QiB ⊆ Q(P ) for QiA, Q
i
B,Q(P ) determined by the sampled

views (V i
A, V

i
B) ← V(M i, P ) and P . For PrE [M

i, P ] > 0 we define the distribution GV(M i, P ) to
be the distribution V(M i, P ) conditioned on Good(M i, P ). Looking ahead to the proof the event
Good(M i, P ) indicates that the attacker Eve has not “missed” any query that is asked by both of
Alice and Bob (i.e. an intersection query) so far, and thus GV(M i, P ) refer to the same distribution
of V(M i, P ) with the extra condition that so far no intersection query is missed by Eve.

3.2 Attacker’s Algorithm

In this subsection we describe an attacker Eve who might ask ω(nAnB/δ
2) queries, but she finds

the key in the two-party key agreement protocol between Alice and Bob with probability 1−O(δ).
Then we show how to make Eve “efficient” without decreasing the success probability too much.
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Protocols in Seminormal Form. We say a protocol is in seminormal form13 if (1) the number
of oracle queries asked by Alice or Bob in each round is at most one, and (2) when the last message
is sent (by Alice or Bob) the other party does not ask any oracle queries and computes its output
without using the last message. The second property could be obtained by simply adding an extra
message LAST at the end of the protocol. (Note that our results do not depend on the number
of rounds.) One can also always achieve the first property without compromising the security as
follows. If the protocol has 2 · ` rounds, we will increase the number of rounds to 2` · (nA +nB − 1)
as follows. Suppose it is Alice’s turn to send mi and before doing so she needs to ask the queries
q1, . . . , qk (perhaps adaptively) from the oracle. Instead of asking these queries from H(·) and
sending mi in one round, Alice and Bob will run 2nA − 1 sub-rounds of interaction so that Alice
will have enough number of (fake) rounds to ask her queries from H(·) one by one. More formally:

1. The messages of the first 2nA− 1 sub-rounds for an odd round i will all be equal to ⊥. Alice
sends the first ⊥ message, and the last message will be mi sent by Alice.

2. For j ≤ k, before sending the message of the 2j − 1’th sub-round Alice asks qj from the
oracle. The number of these queries, namely k, might not be known to Alice at the beginning
of round i, but since k ≤ nA, the number of sub-rounds are enough to let Alice ask all of her
queries q1, . . . , qk without asking more than one query in each sub-round.

If a protocol is in semi-normal form, then in each round there is at most one query asked by
the party who sends the message of that round, and we will use this condition in our analysis.
Moreover, Eve can simply pretend that any protocol is in seminormal form by imagining in her
head that the extra ⊥ messages are being sent between every two real message. Therefore, w.l.o.g
in the following we will assume that the two-party protocol Π has ` rounds and is in seminormal
form.14 Finally note that we cannot simply “expand” a round i in which Alice asks ki queries into
2k messages between Alice and Bob, because then Bob would know how many queries were asked
by Alice, but if we do the transformation as described above, then the actual number of queries
asked for that round could potentially remain secret.

Construction 3.3. Let ε < 1/10 be an input parameter. The adversary Eve attacks the `-round
two-party protocol Π between Alice and Bob (which is in seminormal form) as follows. During the
attack Eve updates a set PE of oracle query-answer pairs as follows. Suppose in round i Alice or
Bob sends the message mi. After mi is sent, if PrE [Good(M i, PE)] = 0 holds at any moment, then
Eve aborts. Otherwise, as long as there is any query q 6∈ Q(PE) such that

Pr
(V i

A,V
i
B)←GV(M i,PE)

[q ∈ Q(V i
A)] ≥ ε

nB
or Pr

(V i
A,V

i
B)←GV(M i,PE)

[q ∈ Q(V i
B)] ≥ ε

nA

(i.e., q is (ε/nB)-heavy for Alice or (ε/nA)-heavy for Bob with respect to the distribution GV(M i, PE))
Eve asks the lexicographically first such q from H(·), and adds (q,H(q)) to PE . At the end of round
` (when Eve is also done with asking her oracle queries), Eve samples (V ′A, V

′
B)← GV(M `, P `E) and

outputs Alice’s output s′A determined by V ′A as its own output sE .

Theorem 3.1 directly follows from the next two lemmas.

13We use the term seminormal to distinguish it from the normal form protocols defined in [IR89].
14Impagliazzo and Rudich [IR89] use the term normal form for protocols in which each party asks exactly one

query before sending their messages in every round.
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Lemma 3.4 (Eve Finds the Key). The output sE of Eve of Construction 3.3 agrees with sB with
probability at least ρ− 10ε over the choice of (rA, rB, H).

Lemma 3.5 (Efficiency of Eve). The probability that Eve of Construction 3.3 asks more than
nA · nB/ε2 oracle queries is at most 10ε.

Before proving Lemmas 3.4 and 3.5 we first derive Theorem 3.1 from them.

Proof of Theorem 3.1. Suppose we modify the adversary Eve and abort it as soon as it asks
more than nA ·nB/ε2 queries and call the new adversary EffEve. By Lemmas 3.4 and 3.5 the output
sE of EffEve still agrees with Bob’s output sB with probability at least ρ − 10ε − 10ε = ρ − 20ε.
Theorem 3.1 follows by using ε = δ/20 < 1/10 and noting that nA·nB/(δ/20)2 = 400·nA·nB/δ2.

3.3 Analysis of Attack

In this subsection we will prove Lemmas 3.4 and 3.5, but before doing so we need some definitions.

Events over E. Event Good holds if and only if Q`A ∩Q`B ⊆ Q`E in which case we say that Eve
has found all the intersection queries. Event Fail holds if and only if at some point during the
execution of the system, Alice or Bob asks a query q, which was asked by the other party, but not
already asked by Eve. If the first query q that makes Fail happen is Bob’s j’th query we say the
event BFailj has happened, and if it is Alice’s j’th query we say that the event AFailj has happened.
Therefore, BFail1, . . . ,BFailnB and AFail1, . . . ,AFailnB are disjoint events whose union is equal to
Fail. Also note that ¬Good ⇒ Fail, because if Alice and Bob share a query that Eve never made,
this must have happened for the first time at some point during the execution of the protocol
(making Fail happen), but also note that Good and Fail are not necessarily complement events in
general. Finally let the event BGoodj (resp. AGoodj) be the event that when Bob (resp. Alice) asks
his (resp. her) j’th oracle query, and this happens in round i + 1, it holds that QiA ∩ QiB ⊆ QiE .
Note that the event BFaili implies BGoodi because if BGoodi does not hold, it means that Alice
and Bob have already had an intersection query out of Eve’s queries, and so BFaili could not be
the first time that Eve is missing an intersection query.

The following lemma plays a central role in proving both of Lemmas 3.5 and 3.4.

Lemma 3.6 (Eve Finds the Intersection Queries). For all i ∈ [nB], PrE [BFaili] ≤ 3ε
2nB

. Similarly,

for all i ∈ [nA], PrE [AFaili] ≤ 3ε
2nA

. Therefore, by a union bound, PrE [¬Good] ≤ PrE [Fail] ≤ 3ε.

We will first prove Lemma 3.6 and then will use this lemma to prove Lemmas 3.5 and 3.4.
In order to prove Lemma 3.6 itself, we will reduce it to stronger statements in two steps i.e.,
Lemmas 3.7 and 3.8. Lemma 3.8 (called the graph characterization lemma) is indeed at the heart
of our proof and characterizes the conditional distribution of the views of Alice and Bob conditioned
on Eve’s view.

3.3.1 Eve Finds Intersection Queries: Proving Lemma 3.6

As we will show shortly, Lemma 3.6 follows from the following stronger lemma.
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Lemma 3.7. Let Bi, Mi, and Pi denote, in order, Bob’s view, the sequence of messages sent
between Alice and Bob, and the oracle query-answer pairs known to Eve, all before the moment that
Bob is going to ask his i’th oracle query that might happen be in a round j that is different from
≥ i.15 Then, for every (Bi,Mi, Pi)← (Bi,Mi,Pi) sampled by executing the system it holds that

Pr
GV(Mi,Pi)

[BFaili | Bi] ≤
3ε

2nB
.

A symmetric statement holds for Alice.

We first see why Lemma 3.7 implies Lemma 3.6.

Proof of Lemma 3.6 using Lemma 3.7. It holds that

Pr[BFaili] =
∑

(Bi,Mi,Pi)∈Supp(Bi,Mi,Pi)

Pr
E

[Bi,Mi, Pi] · Pr
E

[BFaili | Bi,Mi, Pi].

Recall that as we said the event BFaili implies BGoodi. Therefore, it holds that

Pr
E

[BFaili | Bi,Mi, Pi] ≤ Pr
E

[BFaili | Bi,Mi, Pi,BGoodi]

and by definition we have PrE [BFaili | Bi,Mi, Pi,BGoodi] = PrGV(Mi,Pi)[BFaili | Bi]. By Lemma 3.7

it holds that PrGV(Mi,Pi)[BFaili | Bi] ≤
3ε
2nB

, and so:

Pr
E

[BFaili] ≤
∑

(Bi,Mi,Pi)∈Supp(Bi,Mi,Pi)

Pr
E

[Bi,Mi, Pi] ·
3ε

2nB
= Pr[Bob asks ≥ i queries] · 3ε

2nB
≤ 3ε

2nB
.

In the following we will prove Lemma 3.7. In fact, we will not use the fact that Bob is about to
ask his i’th query and will prove a more general statement. For simplicity we will use a simplified
notation M = Mi, P = Pi. Suppose M = M j (namely the number of messages in M is j). The
following graph characterization of the distribution V(M,P ) is at the heart of our analysis of the
attacker Eve of Construction 3.3. We first describe the intuition and purpose behind the lemma.

Intuition. Lemma 3.8 below, intuitively, asserts that at any time during the execution of the
protocol, while Eve is running her attack, the following holds. Let (M,P ) be the view of Eve at
any moment. Then the distribution V(M,P ) of Alice’s and Bob’s views conditioned on (M,P )
could be sampled using a “labeled” bipartite graph G by sampling a uniform edge e = (u, v) and
taking the two labels of these two nodes (denoted by Au, Bv). This graph G has the extra property
of being “dense” and close to being a complete bipartite graph.

Lemma 3.8 (Graph Characterization of V(M,P )). Let M be the sequence of messages sent between
Alice and Bob, let P be the set of oracle query-answer pairs known to Eve by the end of the
round in which the last message in M is sent and Eve is also done with her learning queries. Let
PrV(M,P )[Good(M,P )] > 0. For every such (M,P ), there is a bipartite graph G (depending on
M,P ) with vertices (UA,UB) and edges E such that:

15Also note that Mi is not necessarily the same as M i. The latter refers to the transcript till the i’th message of
the protocol is sent, while the former refers to the messages till Bob is going to ask his i’th messages (and might ask
zero or more than one queries in some rounds).
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1. Every vertex u in UA has a corresponding view Au for Alice (which is consistent with (M,P ))
and a set Qu = Q(Au) \ Q(P ), and the same holds for vertices in UB by changing the role of
Alice and Bob. (Note that every view can have multiple vertices assigned to it.)

2. There is an edge between u ∈ UA and v ∈ UB if and only if Qu ∩Qv = ∅.

3. Every vertex is connected to at least a (1− 2ε) fraction of the vertices in the other side.

4. The distribution (VA, VB) ← GV(M,P ) is identical to: sampling a random edge (u, v) ← E
and taking (Au, Bv) (i.e., the views corresponding to u and v).

5. The distributions GV(M,P ) and V(M,P ) have the same support set.

Lemma 3.8 at the heart of the proof of our main theorem, and so we will first see how to use
this lemma before proving it. In particular, we first use Lemma 3.8 to prove Lemma 3.7, and then
we will prove Lemma 3.8.

Proof of Lemma 3.7 using Lemma 3.8. Let B = Bi,M = Mi, P = Pi be as in Lemma 3.7 and
q be Bob’s i’th query which is going to be asked after the last message mj in M = Mi = M j is sent
to Bob. By Lemma 3.8, the distribution GV(M,P ) conditioned on getting B as Bob’s view is the
same as uniformly sampling a random edge (u, v)← E in the graph G of Lemma 3.8 conditioned on
Bv = B. We prove Lemma 3.7 even conditioned on choosing any vertex v such that Bv = B. For
such fixed v, the distribution of Alice’s view Au, when we choose a random edge (u, v′) conditioned
on v = v′ is the same as choosing a random neighbor u ← N(v) of the node v and then selecting
Alice’s view Au corresponding to the node u. Let S = {u ∈ UA such that q ∈ Au}. Assuming d(u)
denotes the degree of w for any node w we have

Pr
u←N(v)

[q ∈ Au] ≤ |S|
d(v)

≤ |S|
(1− 2ε) · |UA|

≤ |S| · |UB|
(1− 2ε) · |E|

≤
∑

u∈S d(u)

(1− 2ε)2 · |E|
≤ ε

(1− 2ε)2 · nB
<

3ε

2nB
.

First note that proving the above inequality is sufficient for the proof of Lemma 3.7, because BFaili
is equivalent to q ∈ Au. Now, we prove the above inequalities.

The second and fourth inequalities are due to the degree lower bounds of Item 3 in Lemma 3.8.
The third inequality is because |E| ≤ |UA| · |UB|. The fifth inequality is because of the definition of
the attacker Eve who asks ε/nB heavy queries for Alice’s view when sampled from GV(M,P ), as
long as such queries exist. Namely, when we choose a random edge (u, v)← E (which by Item 4 of
Lemma 3.8 is the same as sampling (VA, VB) ← GV(M,P )), it holds that u ∈ S with probability∑

u∈S d(u)/|E|. But for all u ∈ S it holds that q ∈ Qu, and so if
∑

u∈S d(u)/|E| > ε/nB the query q
should have been learned by Eve already and so q could not be in any set Qu. The sixth inequality
is because we are assuming ε < 1/10.

3.3.2 The Graph Characterization: Proving Lemma 3.8

We prove Lemma 3.8 by first presenting a “product characterization” of the distribution GV(M,P ).16

Lemma 3.9 (Product Characterization). For any (M,P ) as described in Lemma 3.8 there exists
a distribution A (resp. B) over Alice’s (resp. Bob’s) views such that the distribution GV(M,P ) is
identical to the product distribution (A×B) conditioned on the event Good(M,P ). Namely,

16A similar observation was made by [IR89], see Lemma 6.5 there.
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GV(M,P ) ≡ ((A×B) | Q(A) ∩Q(B) ⊆ Q(P )).

Proof. Suppose (VA, VB)← V(M,P ) is such that QA ∩QB ⊆ Q where QA = Q(VA), QB = Q(VB),
and Q = Q(P ). For such (VA, VB) we will show that PrGV(M,P )[(VA, VB)] = α(M,P ) ·αA ·αB where:
α(M,P ) only depends on (M,P ), αA only depends on VA, and αB only depends only on VB. This
means that if we let A be the distribution over Supp(VA) such that PrA[VA] is proportional to
αA and let B be the distribution over Supp(VB) such that PrB[VB] is proportional to αB, then
GV(M,P ) is proportional (and hence equal to) the distribution ((A×B) | QA ∩QB ⊆ Q).

In the following we will show that PrGV(M,P )[(VA, VB)] = α(M,P ) · αA · αB. Since we are
assuming QA ∩QB ⊆ Q (i.e., that the event Good(M,P ) holds over (VA, VB)) we have:

Pr
V(M,P )

[(VA, VB)] = Pr
V(M,P )

[(VA, VB) ∧ Good(M,P )] = Pr
V(M,P )

[Good(M,P )] Pr
GV(M,P )

[(VA, VB)]. (1)

On the other hand, by definition of conditional probability we have17

Pr
V(M,P )

[(VA, VB)] =
PrE [(VA, VB,M, P )]

PrE [(M,P )]
. (2)

Therefore, by Equations (1) and (2) we have

Pr
GV(M,P )

[(VA, VB)] =
PrE [(VA, VB,M, P )]

PrE [(M,P )] · PrV(M,P )[Good(M,P )]
. (3)

The denominator of the righthand side of Equation (3) only depends on (M,P ) and so we can
take β(M,P ) = PrE [(M,P )] · PrV(M,P )[Good(M,P )]. In the following we analyze the numerator.

Recall that for a partial function F , by PrE [F ] we denote the probability that H from the sam-
pled execution (rA, rB, H)← E is consistent with F ; namely, PrE [F ] = PrH[F ] (see Definition 2.2).

Let PA (resp. PB) be the set of oracle query-answer pairs in VA (resp. VB). We claim that:

Pr
E

[(VA, VB,M, P )] = Pr[rA = rA] · Pr[rB = rB] · Pr
E

[PA ∪ PB ∪ P ].

The reason is that the necessary and sufficient condition that (VA, VB,M, P ) happens in the
execution of the system is that when we sample a uniform (rA, rB, H), rA equals Alice’s randomness,
rB equals Bob’s randomness, and H is consistent with PA ∪ PB ∪ P . These conditions implicitly
imply that Alice and Bob will indeed produce the transcript M as well.

Now by Lemma 2.5 and (PA ∩ PB) \ P = ∅ we have PrE [PA ∪ PB ∪ P ] equals to:

Pr
E

[P ] · Pr
E

[(PA ∪ PB) \ P ] =
PrE [P ] · PrE [PA \ P ] · PrE [PB \ P ]

PrE [(PA ∩ PB) \ P ]
= Pr
E

[P ] · Pr
E

[PA \ P ] · Pr
E

[PB \ P ].

Therefore, we get:

Pr
GV(M,P )

[(VA, VB)] =
Pr[rA = rA] · Pr[rB = rB] · PrE [P ] · PrE [PA \ P ] · PrE [PB \ P ]

β(M,P )
.

and so we can take αA = Pr[rA = rA] · PrE [PA \ P ], αB = Pr[rB = rB] · PrE [PB \ P ], and
α(M,P ) = PrE [P ]/β(M,P ).

17Note that VA, VB uniquely determine M,P so Pr[VA, VB ,M, P ] = Pr[VA, VB ] holds for consistent VA, VB ,M, P ,
but we choose to write the full event’s description for clarity.
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Graph Characterization. The product characterization of Lemma 3.9 implies that we can think
of GV(M,P ) as a distribution over random edges of some bipartite graph G = (UA,UB, E) defined
based on (M,P ) as follows.

Construction 3.10 (Labeled graph G = (UA,UB, E)). Every node u ∈ UA will have a correspond-
ing view Au of Alice that is in the support of the distribution A from Lemma 3.9. We also let the
number of nodes corresponding to a view VA be proportional to PrA[A = VA], meaning that A
corresponds to the uniform distribution over the left-side vertices UA. Similarly, every node v ∈ UB
will have a corresponding view Bv of Bob such that B corresponds to the uniform distribution
over UB. Doing this is possible because the probabilities PrA[A = VA] and PrB[B = VB] are all
rational numbers. More formally, since in Definition 2.2 of random oracles we assumed H(x) = y
to be rational for all (x, y), the probability space GV(M,P ) only includes rational probabilities.
Thus, if W1, . . . ,WN is the list of all possible views for Alice when sampling (VA, VB)← GV(M,P ),
and if Pr(VA,VB)←GV(M,P )[Wj = VA] = cj/dj where c1, d1, . . . , cN , dN are all integers, we can put
(cj/dj) ·

∏
i∈[N ] di many nodes in UA representing the view Wj . Now if we sample a node u← UA

uniformly and take Au as Alice’s view, it would be the same as sampling (VA, VB) ← GV(M,P )
and taking VA. Finally, we define Qu = Q(Au) \Q(P ) for u ∈ UA to be the set of queries outside of
Q(P ) that were asked by Alice in the view Au. We define Qv = Q(Bu) \ Q(P ) similarly. We put
an edge between the nodes u and v (denoted by u ∼ v) in G if and only if Qu ∩Qv = ∅.

It turns out that the graph G is dense as formalized in the next lemma.

Lemma 3.11. Let G = (UA,UB, E) be the graph of Construction 3.10. Then for every u ∈
UA, d(u) ≥ |UB| · (1 − 2ε) and for every v ∈ UB, d(v) ≥ |UA| · (1 − 2ε) where d(w) is the degree of
the vertex w.

Proof. First note that Lemma 3.9 and the description of Construction 3.10 imply that the distri-
bution GV(M,P ) is equal to the distribution obtained by letting (u, v) be a random edge of the
graph G and choosing (Au, Bv). We will make use of this property.

We first show that for every w ∈ UA,
∑

v∈UB ,w 6∼v d(v) ≤ ε·|E|. The reason is that the probability

of vertex v being chosen when we choose a random edge is d(v)
|E| and if

∑
v∈UB ,w 6∼v

d(v)
|E| > ε, it

means that Pr(u,v)←E [Qw ∩ Qv 6= ∅] ≥ ε. Hence, because |Qw| ≤ nA, by the pigeonhole principle
there would exist q ∈ Qw such that Pr(u,v)←E [q ∈ Qv] ≥ ε/nA. But this is a contradiction,
because if that holds, then q should have been in P by the definition of the attacker Eve of
Construction 3.3, and hence it could not be in Qw. The same argument shows that for every w ∈ UB,∑

u∈UA,u 6∼w d(u) ≤ ε |E|. Thus, for every vertex w ∈ UA∪UB,
∣∣E 6∼(w)

∣∣ ≤ ε |E| where E 6∼(w) denotes

the set of edges that do not contain any neighbor of w (i.e., E 6∼(w) = {(u, v) ∈ E | u 6∼ w∧w 6∼ v}).
The following claim proves Lemma 3.11.

Claim 3.12. For ε ≤ 1/2, let G = (UA,UB, E) be a nonempty bipartite graph where
∣∣E 6∼(w)

∣∣ ≤ ε |E|
for all vertices w ∈ UA ∪ UB. Then d(u) ≥ |UB| · (1− 2ε) for all u ∈ UA and d(v) ≥ |UA| · (1− 2ε)
for all v ∈ UB.

Proof. Let dA = min{d(u) | u ∈ UA} and dB = min{d(v) | v ∈ UB}. By switching the left and right
sides if necessary, we may assume without loss of generality that

dA
|UB|

≤ dB
|UA|

. (4)
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So it suffices to prove that 1 − 2ε ≤ dA
|UB | . Suppose 1 − 2ε > dA

|UB | , and let u ∈ UA be the vertex

that d(u) = dA < (1− 2ε) |UB|. Because for all v ∈ UB we have d(v) ≤ |UA|, thus, using Inequality
(4) we get that |E∼(u)| ≤ dA |UA| ≤ dB |UB| where E∼(u) = E \ E 6∼(u). On the other hand since
we assumed that d(u) < (1− 2ε)|UB|, there are more than 2ε|UB|dB edges in E 6∼(u), meaning that
|E∼(u)| <

∣∣E 6∼(u)
∣∣ /(2ε). But this implies

|E 6∼(u)| ≤ ε|E| = ε
(
|E 6∼(u)|+ |E∼(u)|

)
< ε|E 6∼(u)|+ |E 6∼(u)|/2,

which is a contradiction for ε < 1/2.

Finally we prove Item 5. Namely, for every (A,B) ← V(VA,VB), there is some B′ such that
(A,B′) is in the support set of GV(VA,VB). The latter is equivalent to finding B′ that is consistent
with M,P and that Q(A) ∩ Q(B) ⊆ Q(P ). For sake of contradiction suppose this is not the case.
Therefore, if we sample B′ from the distribution of VB conditioned on P,M then there is always an
element in Q(A) ∩Q(B′) that is outside of cQ(P ). By the pigeonhole principle, one of the queries
in Q(A) \ Q(P ) would be at least 1/nA-heavy for the distribution GV(VA,VB) (in particular the
VB part). But this contradicts how the algorithm of Eve operates.

Remark 3.13 (Sufficient Condition for Graph Characterization). It can be verified that the proof
of the graph characterization of Lemma 3.8 only requires the following: At the end of the rounds,
Eve has learned all the (ε/nB)-heavy queries for Alice and all the (ε/nA)-heavy queries for Bob
with respect to the distribution GV(M,P ). More formally, all we need is that when Eve stops
asking more queries, if there is any query q such that

Pr
(VA,VB)←GV(M,P )

[q ∈ Q(VA)] ≥ ε

nB
or Pr

(VA,VB)←GV(M,P)

[q ∈ Q(VB)] ≥ ε

nA

then q ∈ Q(P ). In particular, Lemma 3.8 holds even if Eve arbitrarily asks queries that are not
necessarily heavy at the time being asked or chooses to ask the heavy queries in an arbitrary
(different than lexicographic) order.

3.3.3 Eve Finds the Key: Proving Lemma 3.4

Now, we turn to the question of finding the secret. Theorem 6.2 in [IR89] shows that once one finds
all the intersection queries, with O(n2) more queries they can also find the actual secret. Here we
use the properties of our attack to show that we can do so even without asking more queries.

First we need to specify and prove the following corollary of of Lemma 3.8.

Corollary 3.14 (Corollary of Lemma 3.8). Let Eve be the eavesdropping adversary of Construc-
tion 3.3 using parameter ε, and PrV(M i,P i

E)[Good(M i, P iE)] > 0 where (M i, P iE) is the view of Eve

by the end of round i (when she is also done with learning queries). For the fixed i,M i, P iE, let
(VA,VB) be the joint view of Alice and Bob as sampled from GV(M i, P iE). Then for some product
distribution (UA ×UB) (where UA ×UB could also depend on i,M i, P iE) we have:

1. ∆((VA,VB), (UA ×UB)) ≤ 2ε.
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2. For every possible (A,B) ← V(VA,VB) (which by Item 5 is the same as the set of all
(A,B)← GV(VA,VB)) we have:

∆((VA | VB = B),UA) ≤ 2ε,

∆((VB | VA = A),UB) ≤ 2ε.

Proof. In the graph characterization G = (UA,UB, E) of GV(M,P ) as described in Lemma 3.8,
every vertex is connected to 1 − 2ε fraction of the vertices of the other section, and consequently
the graph G has 1− 2ε fraction of the edges of the complete bipartite graph with the same nodes
(UA,UB). Thus, if we take UA the uniform distribution over UA and UB the uniform distribution
over UB, they satisfy all the three inequalities.

The process of sampling the components of the system can also be done in a “reversed” order
where we first decide about whether some events are going to hold or not and then sample the
other components conditioned on that.

Notation. In the following let s(V ) be the output determined by any view V (of Alice or Bob)

Construction 3.15. Sample Alice, Bob, and Eve’s views as follows.
1. Toss a coin b such that b = 1 with probability PrE [Good].
2. If b = 1:

(a) Sample Eve’s final view (M,P ) conditioned on Good.
(b) i. Sample views of Alice and Bob (VA, VB) from GV(M,P ).

ii. Eve samples (V ′A, V
′
B)← GV(M,P ), and outputs sE = s(V ′A).

3. If b = 0:
(a) Sample Eve’s final view (M,P ) conditioned on ¬Good.
(b) i. Sample views (VA, VB)← (V(M,P ) | ¬Good).

ii. Eve does the same as case b = 1 above.

In other words, b = 1 if and only if Good holds over the real views of Alice and Bob. We might
use b = 1 and Good interchangeably (depending on which one is conceptually more convenient).

The attacker Eve of Construction 3.3 samples views (V ′A, V
′
B) from GV(M,P ) in both cases of

b = 0 and b = 1, and that is exactly what the Eve of Construction 3.15 does as well, and the pair
(sE , s(VB)) in Constructions 3.3 vs. 3.15 are identically distributed. Therefore, our goal is to lower
bound the probability of getting sE = s(VB) where sE = s(V ′A) is the output of V ′A and s(VB) is
the output of VB (in Construction 3.15). We would show that this event happens in Step 2b with
sufficiently large probability. (Note that it is also possible that sE = s(VB) happens in Step 3b as
well, but we ignore this case.)

In the following, let ρ(M,P ) and win(M,P ) be defined as follows.

ρ(M,P ) = Pr
(VA,VB)←GV(M,P )

[s(VA) = s(VB)]

win(M,P ) = Pr
(VA,VB)←GV(M,P ),(V ′A,V

′
B)←GV(M,P )

[s(V ′A) = s(VB)]

where (VA, VB) and (V ′A, V
′
B) are independent samples.

We will prove Lemma 3.4 using the following two claims.
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Claim 3.16. Suppose P denotes Eve’s set of oracle query-answer pairs after all of the messages in
M are sent. Assuming the probability of Good(M,P ) is nonzero conditioned on (M,P ), for every
ε < 1/10 used by Eve’s algorithm of Construction 3.3 it holds that

win(M,P ) ≥ ρ(M,P )− 4ε.

Now we prove Claim 3.16.

Proof of Claim 3.16. Let (UA × UB) be the product distribution of Corollary 3.14 for the view
of (M,P ). We would like to lower bound the probability of s(V ′A) = s(VB) where (VA, VB) and
(V ′A, V

′
B) are independent samples from the same distribution (VA,VB) ≡ GV(M,P ). Since M,P

are fixed, for simplicity of notation, in the following we let (VA,VB) ≡ GV(M,P ) without explicitly
mentioning M,P . Also, in what follows, VA (resp. VB) will denote the marginal distribution of
the first (resp. second) component of (VA,VB). We will also preserve VA, VB to denote the real
and Bob views sampled from (VA,VB), and we will use V ′A, V

′
B to denote Eve’s samples from the

same distribution (VA,VB).
For every possible view A0 ← VA, let ρ(A0) = Pr(A,B)←(VA,VB))[s(A) = s(B) | A = A0]. By

averaging over Alice’s view, it holds that ρ(M,P ) = E(A,B)←(VA,VB)[ρ(A)]. Similarly, for every
possible view A0 ← VA, let win(A0) = Pr(A,B)←(VA,VB))[s(A) = s(B)]. By averaging over Alice’s
view, it holds that ρ(M,P ) = E(A,B)←(VA,VB)[ρ(A)] and win(M,P ) = E(A,B)←(VA,VB)[win(A)]

In the following, we will prove something stronger than Claim 3.16 and will show that win(V ′A) ≥
ρ(V ′A) − 4ε for every V ′A ← VA, and the claim follows by averaging over V ′A ← VA. Thus, in the
following V ′A will be the fixed sample V ′A ← VA. By Corollary 3.14, for every possible Alice’s
view A ← VA, the distribution of Bob’s view sampled from (VB | VA = A) is 2ε-close to UB.
Therefore, the distribution of VB (without conditioning on VA = A) is also 2ε-close to UB. By
two applications of Lemma 2.9 we get

win(V ′A) = Pr
VB←VB

[s(V ′A) = s(VB)]

≥ Pr
B←UB

[s(V ′A) = s(B)]− 2ε

≥ Pr
V ′B←(VB |VA=V ′A)

[s(V ′A) = s(V ′B)]− 4ε

= ρ(V ′A)− 4ε.

The following claim lower bounds the completeness of the key agreement protocol when con-
juncted with reaching Step 2b in Construction 3.15.

Claim 3.17. It holds that PrE [s(VA) = s(VB) ∧ Good] ≥ ρ− 3ε.

Proof. By Lemma 3.6 it holds that 1− 3ε ≤ PrE [Good]. Therefore

ρ− 3ε ≤ Pr
E

[s(VA) = s(VB)]− Pr
E

[¬Good] = Pr
E

[s(VA) = s(VB) ∧ Good].
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Proof of Lemma 3.4. We will show a stronger claim that Pr[s(V ′A) = s(VB) ∧ Good] ≥ ρ − 7ε
which implies Pr[s(V ′A) = s(VB)] ≥ ρ − 7ε as well. By definition of Construction 3.15 and using
Claims 3.16 and 3.17 we have:

Pr[s(V ′A) = s(VB) ∧ Good] = Pr
E

[Good] · E
(M,P )←((M,P)|Good)

[win(M,P )]

≥ Pr
E

[Good] · E
(M,P )←((M,P)|Good)

[ρ(M,P )− 4ε]

=
(

Pr
E

[Good] · E
(M,P )←((M,P)|Good)

[ρ(M,P )]
)
− (4 Pr

E
[Good] · ε)

=
(

Pr
E

[Good] · Pr[s(VA) = s(VB) | Good]
)
− (4 Pr

E
[Good] · ε)

≥ (ρ− 3ε)− (4ε) = ρ− 7ε.

3.3.4 Efficiency of Eve: Proving Lemma 3.5

Recall that Eve’s criteria for “heaviness” is based on the distribution GV(M,PE) where M is the
current sequence of messages sent so far and PE is the current set of oracle query-answer pairs known
to Eve. This distribution is conditioned on Eve not missing any queries up to this point. However,
because we have proven that the event Fail has small probability, queries that are heavy under
GV(M,PE) are also (typically) almost as heavy under the real distribution V(M,PE). Intuitively
this means that, on average, Eve will not make too many queries.

Definition 3.18 (Coloring of Eve’s Queries). Suppose (M i, PE) is the view of Eve at the moment
Eve asks query q. We call q a red query, denoted q ∈ R, if Pr[Good(M i, PE)] ≤ 1/2. We call q a green
query of Alice’s type, denoted q ∈ GA, if q is not red and Pr(V i

A,V
i
B)←V(M i,PE)[q ∈ Q(V i

A)] ≥ ε
2nB

.

(Note that here we are sampling the views from V(M i, PE) and not from GV(M i, PE) and the
threshold of “heaviness” is ε

2nB
rather than ε

nB
.) Similarly, we call q a green query of Bob’s type,

denoted q ∈ GB, if q is not red and Pr(V i
A,V

i
B)←V(M i,PE)[q ∈ Q(V i

B)] ≥ ε
2nA

. We also let the set of
all green queries to be G = GA ∪ GB.

The following claim shows that each of Eve’s queries is either red or green.

Claim 3.19. Every query q asked by Eve is either in R or in G.

Proof. If q is a query of Eve which is not red, then PrV(M i,PE)[Good(M i, PE)] ≥ 1/2 where (M i, PE)
is the view of Eve when asking q. Since Eve is asking q, either of the following holds:

1. Pr(V i
A,V

i
B)←GV(M i,PE)[q ∈ Q(V i

A)] ≥ ε
nB

, or

2. Pr(V i
A,V

i
B)←GV(M i,PE)[q ∈ Q(V i

B)] ≥ ε
nA
.

If case 1 holds, then

Pr
(V i

A,V
i
B)←V(M i,PE)

[q ∈ Q(V i
A)] ≥ Pr

(V i
A,V

i
B)←V(M i,PE)

[Good(M i, PE) ∧ q ∈ Q(V i
A)]

= Pr
V(M i,PE)

[Good(M i, PE)] · Pr
(V i

A,V
i
B)←GV(M i,PE)

[q ∈ Q(V i
A)]

≥ (
1

2
) · ε
nB

=
ε

2nB

which implies that q ∈ GA. Case 2 similarly shows that q ∈ GB.
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We will bound the size of the queries of each color separately.

Claim 3.20 (Bounding Red Queries). PrE [R 6= ∅] ≤ 6ε.

Claim 3.21 (Bounding Green Queries). EE [|G|] ≤ 4nA · nB/ε. Therefore, by Markov inequality,
PrE [|G| ≥ nA · nB/ε2] ≤ 4ε.

Proving Lemma 3.5. Lemma 3.5 follows by a union bound and Claims 3.19, 3.20, and 3.21.

Proof of Claim 3.20. Claim 3.20 follows directly from Lemma 2.7 and Lemma 3.6 as follows. Let
x (in Lemma 2.7) be E , the event E be Fail, the sequence x1, . . . , be the sequence of pieces of
information that Eve receives (i.e., the messages and oracle answers), λ = 3ε, λ1 = 1/2 and
λ2 = 6ε. Lemma 3.6 shows that Pr[Fail] ≤ λ. Therefore, if we let D be the event that at some
point conditioned on Eve’s view the probability of Fail is more than λ1, Lemma 2.7 shows that the
probability of D is at most λ2. Also note that for every sampled (M,PE), Pr[¬Good | (M,PE)] ≤
Pr[Fail | (M,PE)]. Therefore, with probability at least 1− λ2 = 1− 6ε, during the execution of the
system, the probability of Good(M,PE) conditioned on Eve’s view will never go below 1/2.

Proof of Claim 3.21. We will prove that EE [|GA|] ≤ 2nA · nB/ε, and EE [|GB|] ≤ 2nA · nB/ε follows
symmetrically. Using these two upper bounds we can derive Claim 3.21 easily.

For a fixed query q ∈ {0, 1}`, let Iq be the event, defined over E , that Eve asks q as a green
query of Alice’s type (i.e., q ∈ GA). Let Fq be the event that Alice actually asks q (i.e., q ∈ QA). By
linearity of expectation we have EE [|GA|] =

∑
q Pr[Iq] and

∑
q Pr[Fq] ≤ |QA| ≤ nA. Let γ = ε

2nB
.

We claim that for all q it holds that:

Pr[Iq] · γ ≤ Pr[Fq]. (5)

First note that Inequality (5) implies Claim 3.21 as follows:

E
E

[|GA|] =
∑
q

Pr[Iq] ≤
1

γ

∑
q

Pr[Fq] ≤
nA
γ

=
2nAnB
ε

.

To prove Inequality (5), we use Lemma 2.7 as follows. The underlying random variable x (of
Lemma 2.7) will be E , the event E will be Fq, the sequence of random variables x1,x, . . . will be
the sequence of pieces of information that Eve observes, λ will be Pr[Fq], and λ1 will be γ. If Iq
holds, it means that based on Eve’s view the query q has at least γ probability of being asked by
Alice (at some point before), which implies that the event D (of Lemma 2.7) holds, and so Iq ⊆ D.
Therefore, by Lemma 2.7 Pr[Iq] ≤ Pr[D] ≤ λ/λ1 = Pr[Fq]/γ proving Inequality (5).

Remark 3.22 (Sufficient Condition for Efficiency of Eve). The proof of Claims 3.19 and 3.21
only depend on the fact that all the queries asked by Eve are are either (ε/nB)-heavy for Alice
or (ε/nA)-heavy for Bob with respect to the distribution GV(M,P ). More formally, all we need is
that whenever Eve asks a query q it holds that

Pr
(VA,VB)←GV(M,P )

[q ∈ Q(VA)] ≥ ε

nB
or Pr

(VA,VB)←GV(M,P)

[q ∈ Q(VB)] ≥ ε

nA
.

In particular, the conclusions of Claims 3.19 and 3.21 hold regardless of which heavy queries Eve
chooses to ask at any moment, and the only important thing is that all the queries asked by Eve
were heavy at the time of being asked.
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4 Extensions

In this section we prove several extensions to our main result that can all be directly obtained from
the results proved in Section 3. The main goal of this section is to generalize our main result to a
broader setting so that it could be applied in subsequent work more easily. We assume the reader
is familiar with the definitions given in Sections 2 and 3.

4.1 Making the Views Almost Independent

In this section we will prove Theorem 1.3 along with several other extensions. These extensions
were used in [DSLMM11] to prove black-box separations for certain optimally-fair coin-tossing
protocols. We first mention these extensions informally and then will prove them formally.

Average Number of Queries: We will show how to decrease the number of queries asked by
Eve by a factor of Ω(ε) if we settle for bounding the average number of queries asked by Eve.
This can always be turned into a an attack of worst-case complexity by putting the Θ(ε)
multiplicative factor back and applying the Markov inequality.

Changing the Heaviness Threshold: We will show that the attacker Eve of Construction 3.3
is “robust” with respect to choosing its “heaviness” parameter ε. Namely, if she changes the
parameter ε arbitrarily during her attack, as long as ε ∈ [ε1, ε2] for some ε1 < ε2, we can still
show that Eve is both “successful” and “efficient” with high probability.

Learning the Dependencies: We will show that our adversary Eve can, with high probability,
learn the “dependency” between the views of Alice and Bob in any two-party computation.
Dachman et al. [DSLMM11] were the first to point out that such results can be obtained from
results proved in original publication of this work [BMG09]. Haitner et al. [HOZ13], relying
some of the results proved in [BMG09], proved a variant of the first part of our Theorem 1.3
in which n bounds both of nA and nB.

Lightness of Queries: We observe that with high probability the following holds at the end of
every round conditioned on Eve’s view: For every query q not learned by Eve, the probability
of q being asked by Alice or Bob remains “small”. Note that here we are not conditioning on
the event Good(M,P ).

Now we formally prove the above extensions.
The following definition defines a class of attacks that share a specific set of properties.

Definition 4.1. For ε1 ≤ ε2, we call Eve an (ε1, ε2)-attacker, if Eve performs her attack in the
framework of Construction 3.3, but instead of using a single parameter ε it uses ε1 ≤ ε2 as follows.

1. All queries asked are heavy according to parameter ε1. Every query q asked by Eve,
at the time of being asked, should be either (ε1/nB)-heavy for Alice or (ε1/nA)-heavy for Bob
with respect to the distribution GV(M,P ) where (M,P ) is the view of Eve when asking q.

2. No heavy query, as parameterized by ε2, remains unlearned. At the end of every
round i, if (M,P ) is the view of Eve at that moment, and if q is any query that is either
(ε2/nB)-heavy for Alice or (ε2/nA)-heavy for Bob with respect to the distribution GV(M,P ),
then Eave has to have learned that query already to make sure q ∈ Q(P ).
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Comparison with Eve of Construction 3.3. The Eve of Construction 3.3 is an (ε, ε)-attacker,
but for ε1 < ε2 the class of (ε1, ε2)-attackers include algorithms that could not necessarily be
described by Construction 3.3. For example, an (ε1, ε2)-attackers can chose any ε ∈ [ε1, ε2] and
run the attacker of Construction 3.3 using parameter ε, or it can even keep changing its parameter
ε ∈ [ε1, ε2] along the execution of the attack. In addition, the attacker of Construction 3.3 needs to
choose the lexicographically first heavy query, while an (ε1, ε2)-attacker has the freedom of choosing
any query so long as it is (ε1/nB)-heavy for Alice or (ε1/nA)-heavy for Bob. Finally, an (ε1, ε2)-
attacker could use its own randomness rE that affects its choice of queries, as long as it respects
the two conditions of Definition 4.1.

Definition 4.2 (Self Dependency). For every joint distribution (x,y), we call SelfDep(x,y) =
∆((x,y), (x× y)) the self (statistical) dependency of a (x,y) where in (x× y) we sample x and y
independently from their marginal distributions.

The following theorem formalizes Theorem 1.3. The last part of the theorem is used by [DSLMM11]
to prove lower-bounds on coin tossing protocols from one-way functions. We advise the reader to
review the notations of Section 3.1 as we will use some of them here for our modified variant of
(ε1, ε2)-attackers.

Theorem 4.3 (Extensions to Main Theorem). Let, Π, rA, nA, rB, nB, H, sA, sB, ρ be as in Theo-
rem 3.1 and suppose ε1 ≤ ε2 < 1/10. Let Eve be any (ε1, ε2)-attacker who is modified to stop asking
any queries as soon as she is about to ask a red query (as defined in Definition 3.18). Then the
following claims hold.

1. Finding outputs: Eve’s output agrees with Bob’s output with probability ρ− 16ε2.

2. Average number of queries: The expected number of queries asked by Eve is at most
4nAnB/ε1. More generally, if we let Qε to be the number of (green) queries that are asked
because of being ε-heavy for a fixed ε ∈ [ε1, ε2], it holds that E[|Qε|] ≤ 4nAnB/ε.

3. Self-dependency at every fixed round. For any fixed round i, it holds that

E
(M,P )←(Mi,Pi

E)
[SelfDep(V(M,P ))] ≤ 21 · ε2.

4. Simultaneous self-dependencies at all rounds. For every α, β such that 0 < α < 1,
0 < β < 1, and α · β ≥ ε2, with probability at least 1 − 9α the following holds: at the end of
every round i, we have SelfDep(V(M i, P iE)) ≤ 9β.

5. Simultaneous lightness at all round. For every α, β such that 0 < α < 1, 0 < β < 1,
and α ·β ≥ ε2, with probability at least 1− 9α the following holds: at the end of every round,
if q 6∈ Q(P ) is any query not learned by Eve so far we have

Pr
(VA,VB)←V(M,P )

[q ∈ Q(VA)] <
ε2
nB

+ β and Pr
(VA,VB)←V(M,P )

[q ∈ Q(VB)] <
ε2
nA

+ β.

6. Dependency and lightness at every fixed round. For every round i and every (M,P )←
(Mi,Pi

E) there is a product distribution (WA ×WB) such that the following two hold:

(a) E(M,P )[∆(V(M,P ), (WA ×WB))] ≤ 15ε2.
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(b) With probability 1 − 6ε2 over the choice of (M,P ) (which determines the distributions
WA,WB as well), we have Pr[q ∈ Q(WA)] < ε2

nB
and Pr[q ∈ Q(WB)] < ε2

nA
.

In the rest of this section we prove Theorem 4.3. To prove all the properties, we first assume
that the adversary is an (ε1, ε2)-attacker, denoted by UnbEve (Unbounded Eve), and then will
analyze how stopping UnbEve upon reaching a red query (i.e., converting it into Eve) will affect
her execution.

Remarks 3.13 and 3.22 show that many of the results proved in the previous section extend to
the more general setting of (ε1, ε2)-attackers.

Claim 4.4. All the following lemmas, claims, and corollaries still hold when we use an arbitrary
(ε1, ε2)-attacker and ε1 < ε2 < 1/10:

1. Lemma 3.8 using ε = ε2.

2. Corollary 3.14 using ε = ε2.

3. Lemma 3.6 using ε = ε2.

4. Lemma 3.4 using ε = ε2.

5. Claim 3.20 using ε = ε2.

6. Claim 3.19 by using ε = ε1 in the definition of green queries.

7. Claim 3.21 by using ε = ε1 in the definition of green queries. More generally, the proof of
Claim 3.21 works directly (without any change) if we run a (ε1, ε2) attack, but define the green
queries using a parameter ε ∈ [ε1, ε2] (and only count such queries, as green ones).

Proof. Item 1 follows from Remark 3.13 and the the second property of (ε1, ε2)-attackers. All
Items 2–5 follow from Item 1 because the proofs of the corresponding statements in previous
section only rely (directly or indirectly) on Lemma 3.8.

Items 6 and 7 follow from Remark 3.22 and the first property of (ε1, ε2)-attackers.

Finding Outputs. By Item 4 of Claim 4.4, UnbEve hits Bob’s output with probability at least
ρ− 10ε2. By Item 5 of Claim 4.4, the probability that UnbEve asks any red queries is at most 6ε2.
Therefore, Eve’s output will agree with Bob’s output with probability at least ρ−10ε−6ε = ρ−16ε.

Number of Queries. By Item 7, the expected number of green queries asked by UnbEve is
at most 4nAnB/ε1. As also specified in Item 7, the more general upper bound, for an arbitrary
parameter ε ∈ [ε1, ε2], holds as well.

Dependencies. We will use the following definition which relaxes the notion of self dependency
by computing the statistical distance of (x,y) to the closest product distribution (that might be
different from (x× y)).
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Definition 4.5 (Statistical Dependency). For two jointly distributed random variables (x,y), let
the statistical dependency of (x,y), denoted by StatDep(x,y), be the minimum statistical distance
of (x,y) from all product distributions defined over Supp(x)× Supp(y). More formally:

StatDep(x,y) = inf
(a×b)

∆((x,y), (a× b))

in which a× b are distributed over Supp(x)× Supp(y).

By definition, we have StatDep(x,y) ≤ SelfDep(x,y). The following lemma by [MMP14] shows
that the two quantities can not be too far.

Lemma 4.6 (Lemma A.6 in [MMP14]). SelfDep(x,y) ≤ 3 · StatDep(x,y).

Remark 4.7. We note that, SelfDep(x,y) can, in general, be larger than StatDep(x,y). For
instance consider the following joint distribution over (x,y) where x and y are both Boolean
variables: Pr[x = 0,y = 0] = 1/3,Pr[x = 1,y = 0] = 1/3,Pr[x = 1,y = 1] = 1/3,Pr[x = 0, y =
1] = 0. It is easy to see that SelfDep(x,y) = 2/9, but ∆((x,y), (a× b)) = 1/6 < 2/9 for a product
distribution (a× b) defined as follows: a ≡ x and Pr[b = 0] = Pr[b = 1] = 1/2.

The following lemma follows from Lemma 2.13 and the definition of statistical dependency.

Lemma 4.8. For jointly distributed (x,y) and event E defined over the support of (x,y), it holds
that StatDep(x,y) ≤ Pr(x,y)[E] + StatDep((x,y) | ¬E). We take the notational convention that
whenever Pr(x,y)[E] = 0 we let StatDep((x,y) | ¬E) = 1.

Proof. Let (a×b) be such that ∆(((x,y) | ¬E), (a×b)) ≤ δ. For the same (a×b), by Lemma 2.13
it holds that ∆((x,y), (a× b)) ≤ Pr(x,y)[E] + δ. Therefore

StatDep(x,y) = inf
(a×b)

∆((x,y), (a× b)) ≤ Pr
(x,y)

[E] + inf
(a×b)

∆(((x,y) | ¬E), (a× b))

≤ Pr
(x,y)

[E] + StatDep((x,y) | ¬E).

Self-dependency at every fixed round. By Item 2 of Claim 4.4, we get that by running
UnbEve we obtain StatDep(GV(M,P )) ≤ 2ε2 where (M,P ) is the view of UnbEve at the end of
the protocol. By also Lemma 4.8 we get:

StatDep(V(M,P )) ≤ Pr
E

[¬Good | (M,P )] + StatDep(GV(M,P ))

≤ Pr
E

[¬Good | (M,P )] + 2ε2.

Therefore, by Item 3 of Claim 4.4 and Lemma 4.6 we get

E
(M,P )←(M,P)

[StatDep(V(M,P ))] ≤ 3 ·
(

E
(M,P )←(M,P)

[StatDep(V(M,P ))]

)
≤ 3 ·

(
E

(M,P )←(M,P)

[
Pr
E

[¬Good | (M,P )]

]
+ 2ε2

)
≤ 3 ·

(
Pr
E

[¬Good] + 2ε2

)
≤ 3 · 5ε2 = 15ε2
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Since the probability of UnbEve asking any red queries is at most 6ε2 (Item 5 of Claim 4.4),
therefore when we run Eve, it holds that E(M,P )←(M,P)[StatDep(V(M,P ))] increases at most by 6ε2
compared to when running UnvEve. This is because whenever we halt the execution of Eve (which
happens with probability at most 6ε2) this can lead to statistical dependency of V(M,P ) at most
1. Therefore, if we use Eve instead of UnbEve, it holds that

E
(M,P )←(M,P)

[StatDep(V(M,P ))] ≤ 15ε2 + 6ε2 = 21ε2.

Simultaneous self-dependencies at all rounds. First note that 0 < α < 1, 0 < β < 1, and
α · β ≥ ε2 imply that α ≥ ε2 and β ≥ ε2. By Item 3 of Claim 4.4, when we run UnbEve, it
holds that PrE [Fail] ≤ 3ε2, so by Lemma 2.7 we conclude that with probability at least 1 − 3α it
holds that during the execution of the protocol, the probability of Fail (and thus, the probability
of ¬Good(M,P )) conditioned on Eve’s view always remains at most β. Therefore, by Item 2 of
Claim 4.4 and Lemma 4.8, with probability at least 1− 3α the following holds at the end of every
round (where (M,P ) is Eve’s view at the end of that round)

StatDep(V(M,P )) ≤ Pr
E

[¬Good | (M,P )] + StatDep(GV(M,P ))

≤ β + 2ε2 ≤ 3β.

Using Lemma 4.6 we obtain the bound SelfDep(V(M,P )) ≤ 9β. Since the probability of UnbEve
asking any red queries is at most 6ε2, by a union bound we conclude that with probability at least
1− 3α− 6ε2 > 1− 9α, we still get SelfDep(V(M,P )) ≤ 9β at the end of every round.

Simultaneous lightness at all rounds. As shown in the previous item, for such α, β, with
probability at least 1− 9α it holds that during the execution of the protocol, the probability of Fail
(and thus, the probability of ¬Good(M,P )) conditioned on Eve’s view always remains at most β.
Now suppose (M,P ) be the view of Eve at the end of some round where PrV(M,P [¬Good(M,P )] ≤ β.
By the second property of (ε1, ε2)-attackers, it holds that:

Pr
(VA,VB)←V(M,P )

[q ∈ Q(VA)] ≤ Pr
V(M,P )

[¬Good(M,P )] + Pr
(VA,VB)←GV(M,P )

[q ∈ Q(VA)] ≤ ε2/nB + β.

The same proof shows that a similar statement holds for Bob.

Dependency and lightness at every fixed round. Let (WA,WB) ≡ GV(M,P ). The product
distribution we are looking for will be WA ×WB. When we run UnbEve, by Lemma 3.6 it holds
that E(M,P )[∆((WA,WB),V(M,P ))] ≤ 3ε2, because otherwise the probability of Fail will be more
than 3ε2. Also, by Corollary 3.14 it holds that StatDep(V(M,P )) ≤ 2ε2, and by Lemma 4.6, it
holds that SelfDep(V(M,P )) = ∆(V(M,P ), (WA ×WB)) ≤ 6ε2. Thus, when we run UnbEve, we
get E(M,P )[∆((WA ×WB),V(M,P ))] ≤ 9ε2. By Claim 3.20, the upper bound of 9ε2 when we
modify UnbEve to Eve (by not asking red queries), could increase only by 6ε2. This proves the
first part.

To prove the second part, again we use Claim 3.20 which bounds the probability of asking a red
query by 6ε2. Also, as long as we do not halt Eve (i.e., no red query is asked), Eve and UnbEve
remain the same, and the lightness claims hold for UnbEve by definition of the attacker UnbEve.
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4.2 Removing the Rationality Condition

In this subsection we show that all the results of this paper, except the graph characterization of
Lemma 3.8, hold even with respect to random oracles that are not necessarily rational according
to Definition 2.2. We will show that a variant of Lemma 3.8, which is sufficient for all of our
applications, still holds. In the following, by an irrational random oracle we refer to a random
oracle that satisfies Definition 2.2 except that its probabilities might not be rational.

Lemma 4.9 (Characterization of V(M,P )). Let H be an irrational oracle, let M be the sequence
of messages sent between Alice and Bob so far, and let P be the set of oracle query-answer pairs
known to Eve (who uses parameter ε) by the end of the round in which the last message in M
is sent. Also suppose PrV(M,P )[Good(M,P )] > 0. Let (VA,VB) be the joint view of Alice and
Bob as sampled from GV(M,P ), and let UA = Supp(VA),UB = Supp(VB). Let G = (UA,UB, E)
be a bipartite graph with vertex sets UA,UB and connect uA ∈ UA to uB ∈ UB if and only if
Q(uA) ∩Q(uB) ⊆ Q(P ). Then there exists a distribution UA over UA and a distribution UB over
UB such that:

1. For every vertex u ∈ UA, it holds that Prv←UB
[u 6∼ v] ≤ 2ε, and similarly for every vertex

u ∈ UB, it holds that Prv←UA
[u 6∼ v] ≤ 2ε.

2. The distribution (VA, VB) ← GV(M,P ) is identical to: sampling u ← UA and v ← UB

conditioned on u ∼ v, and outputting the views corresponding to u and v.

Proof Sketch. The distributions UA and UB are in fact the same as the distributions A and B of
Lemma 3.9. The rest of the proof is identical to that of Lemma 3.8 without any vertex repetition. In
fact, repetition of vertices (to make the distributions uniform) cannot be necessarily done anymore
because of the irrationality of the probabilities. Here we explain the alternative parameter that
takes the role of |E 6∼(u)|/|E|. For u ∈ UA let q 6∼(u) be the probability that if we sample an edge
e← (VA,VB), it does not contain u as Alice’s view, and define q 6∼(u) for u ∈ UB similarly. It can
be verified that by the very same argument as in Lemma 3.8, it holds that q 6∼(u) ≤ ε for every
vertex u in G. The other steps of the proof remain the same.

The characterization of V(M,P ) by Lemma 4.9 can be used to derive Corollary 3.14 directly
(using the same distributions UA and UB). Remark 3.13 also holds with respect to Lemma 4.9.
Here we show how to derive Lemma 3.7 and the rest of the results will follow immediately.

Proving Lemma 3.7. Again, we prove Lemma 3.7 even conditioned on choosing any vertex v
that describes Bob’s view. For such vertex v, the distribution of Alice’s view, when we choose a
random edge (u, v′)← (VA,VB) conditioned on v = v′ is the same as choosing u← UA conditioned
on u ∼ v. Let’s call this distribution Uv

A. Let S = {u ∈ UA | q ∈ Au} where q is the next query
of Bob as specified by v. Let p(S) =

∑
u∈S Pr[UA = u], q(S) = Pr(u,v)←(VA,VB)[u ∈ S], and let

p(E) = Pru←UA,v←UB
[u ∼ v]. Also let p∼(v) =

∑
u∼v Pr[UA = u]. Then, we have:

Pr
u←Uv

A

[q ∈ Au] ≤ p(S)

p∼(v)
≤ p(S)

1− 2ε
≤ p(S)

(1− 2ε) · p(E)
≤ q(S)

(1− 2ε)2 · p(E)
≤ ε

(1− 2ε)2 · nB
<

3ε

2nB
.

The second and fourth inequalities are due to the degree lower bounds of Item 1 in Lemma 4.9.
The third inequality is because p(E) < 1. The fifth inequality is because of the definition of the
attacker Eve who asks ε/nB heavy queries for Alice’s view when sampled from GV(M,P ), as long
as such queries exist. The sixth inequality is because we are assuming ε < 1/10.

29



Acknowledgement. We thank Russell Impagliazzo for very useful discussions and the anony-
mous reviewers for their valuable comments.

References

[BBE92] Charles H. Bennett, Gilles Brassard, and Artur K. Ekert, Quantum cryptography,
Scientific American 267 (1992), no. 4, 50–57.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai, Basing weak public-key cryptography
on strong one-way functions, TCC (Ran Canetti, ed.), Lecture Notes in Computer
Science, vol. 4948, Springer, 2008, pp. 55–72.

[BHK+11] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante, and
Louis Salvail, Merkle puzzles in a quantum world, CRYPTO (Phillip Rogaway, ed.),
Lecture Notes in Computer Science, vol. 6841, Springer, 2011, pp. 391–410.

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich, Limits on
the power of zero-knowledge proofs in cryptographic constructions, TCC (Yuval Ishai,
ed.), Lecture Notes in Computer Science, vol. 6597, Springer, 2011, pp. 559–578.

[BMG09] Boaz Barak and Mohammad Mahmoody-Ghidary, Merkle puzzles are optimal - an O (
n 2)-query attack on any key exchange from a random oracle, CRYPTO (Shai Halevi,
ed.), Lecture Notes in Computer Science, vol. 5677, Springer, 2009, pp. 374–390.

[BR93] Mihir Bellare and Phillip Rogaway, Random oracles are practical: A paradigm for
designing efficient protocols, ACM Conference on Computer and Communications
Security, 1993, pp. 62–73.

[BS08] Gilles Brassard and Louis Salvail, Quantum merkle puzzles, International Conference
on Quantum, Nano and Micro Technologies (ICQNM), IEEE Computer Society, 2008,
pp. 76–79.

[CGH04] Canetti, Goldreich, and Halevi, The random oracle methodology, revisited, JACM:
Journal of the ACM 51 (2004), no. 4, 557–594.

[Cle86] Richard Cleve, Limits on the security of coin flips when half the processors are faulty
(extended abstract), Annual ACM Symposium on Theory of Computing (Berkeley,
California), 28–30 May 1986, pp. 364–369.

[DH76] Whitfield Diffie and Martin Hellman, New directions in cryptography, IEEE Transac-
tions on Information Theory IT-22 (1976), no. 6, 644–654.

[DSLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin, On
the black-box complexity of optimally-fair coin tossing, TCC (Yuval Ishai, ed.), Lecture
Notes in Computer Science, vol. 6597, Springer, 2011, pp. 450–467.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan, Bounds on the
efficiency of generic cryptographic constructions, SIAM journal on Computing 35
(2005), no. 1, 217–246.

30



[Gro96] Lov K. Grover, A fast quantum mechanical algorithm for database search, Annual
ACM Symposium on Theory of Computing (STOC), 22–24 May 1996, pp. 212–219.

[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev, Finding collisions
in interactive protocols – A tight lower bound on the round complexity of statistically-
hiding commitments, Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, 2007, pp. 669–679.

[Hol15] Thomas Holenstein, Complexity theory, 2015, http://www.complexity.ethz.ch/

education/Lectures/ComplexityFS15/skript_printable.pdf.

[HOZ13] Iftach Haitner, Eran Omri, and Hila Zarosim, Limits on the usefulness of random
oracles, Theory of Cryptography, TCC (Amit Sahai, ed.), Lecture Notes in Computer
Science, vol. 7785, Springer, 2013, pp. 437–456.

[IR89] Russell Impagliazzo and Steven Rudich, Limits on the provable consequences of one-
way permutations, Annual ACM Symposium on Theory of Computing (STOC), 1989,
Full version available from Russell Impagliazzo’s home page https://cseweb.ucsd.

edu/~russell/secret.ps, pp. 44–61.
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