
Secure High-Rate Transaction Processing in
Bitcoin

(full version)

Yonatan Sompolinsky1 and Aviv Zohar1,2

1 School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

2 Microsoft Research, Herzliya, Israel
yoni sompo@cs.huji.ac.il, avivz@cs.huji.ac.il

Abstract. Bitcoin is a disruptive new crypto-currency based on a de-
centralized open-source protocol which has been gradually gaining mo-
mentum. Perhaps the most important question that will affect Bitcoin’s
success, is whether or not it will be able to scale to support the high
volume of transactions required from a global currency system. We in-
vestigate the implications of having a higher transaction throughput on
Bitcoin’s security against double-spend attacks. We show that at high
throughput, substantially weaker attackers are able to reverse payments
they have made, even well after they were considered accepted by re-
cipients. We address this security concern through the GHOST rule,
a modification to the way Bitcoin nodes construct and re-organize the
block chain, Bitcoin’s core distributed data-structure. GHOST has been
adopted and a variant of it has been implemented as part of the Ethereum
project, a second generation distributed applications platform.

1 Introduction

Bitcoin is a disruptive protocol for distributed digital currency, which relies on
cryptographic elements to secure its operation. Since its initial launch in 2009
by its mysterious creator Satoshi Nakamoto, general interest in the currency has
been slowly increasing, and its uses have been slowly expanding.

While several obstacles such as regulatory uncertainty and an under-developed
infrastructure still need to be overcome, the main challenges that must be faced
from a computer science perspective are related to Bitcoin’s ability to scale to
higher transaction rates and to its ability to quickly process individual trans-
actions. This paper aims to address both of these issues and the connections
between them and Bitcoin’s security against double-spend attacks.

The core idea behind the Bitcoin protocol is to replace the centralized control
of money transmission ordinarily taken up by large organizations such as banks,
credit card companies, and other money transmitters, by a large peer-to-peer
network. The nodes of this network verify each other’s work and thus ensure
that no single entity is able to misbehave. Bitcoin achieves this by maintaining

a complete and public record of all its transactions at each node in the network.
This ledger, which is known as the block chain, is composed of a growing sequence
of blocks, each containing a set of approved transactions. The main challenge
that Bitcoin overcomes is the synchronization of the ledger between the various
nodes. Malicious parties may further try to interfere with this synchronization
in order to double-spend—to redirect previously processed payments that will
allow them to use the same money twice.

To help solve the double-spend problem blocks are required to contain a
proof-of-work, which is computationally difficult to generate. The difficulty of
this task is adaptively set so that a block is created approximately once every
10 minutes in the entire network. Once created, blocks are propagated through
the network. The 10 minute interval allows blocks to (usually) propagate to
the vast majority of nodes before another block is created. If a node receives
two conflicting blocks, which were created by distant nodes unaware of each
other’s work (or perhaps by a malicious attacker), it resolves the conflict by
picking the block pertaining to the longest block chain and adopting it. Satoshi
Nakamoto’s original analysis of the protocol [12] shows that as long as any
attacker holds less than 50% of the computational power in the network, the
probability that double-spend attacks succeed decreases exponentially with time,
which essentially allows payments to be considered accepted and irreversible
after some period. The analysis, however, assumes that blocks are sent across
the network much faster than they are created, and so it is ill-fitted to a scenario
in which many transactions are processed by the network (which necessitates the
frequent creation of larger blocks, taking longer to transmit).

Indeed, capacity for additional transaction processing in Bitcoin is very much
needed. As of December 2014, Bitcoin’s network processes around 90 thousand
transactions per day [2], a number which has been slowly growing, but still
amounts to an average of roughly 1 transaction per second (TPS). In contrast,
Visa’s global payment system handled a reported 150 million transactions per
day in 2010 (just under 2000 TPS), and has grown steadily since. If Bitcoin is
not able to scale to appropriate rates that match demand, transaction fees will
rise, and users will be driven to use other forms of payment.

Bitcoin’s current low number of transactions is mainly due to its small user-
base. Once adoption increases, the system will need to scale to process trans-
actions at a higher rate, and previous security guarantees may no longer hold.
We investigate how susceptible the protocol is to double-spend attacks when
more transactions are processed per second. We note that larger block sizes or
more frequent block creation events (which are required in order to increase the
transaction throughput) result in more conflicts between blocks, which severely
reduces the level of security from attacks.

To mitigate this, some methods for block compression were suggested by
members in the Bitcoin community, e.g., transmitting only transaction hashes in
blocks (an almost 16-fold reduction in size), or applying invertible Bloom lookup
tables to communicate the differences between the subsets of transactions nodes
are aware of [3]. Another approach is to use trustless off-chain transaction chan-

nels that slowly release money in minute portions to another party by updating
a transaction that is only committed to the block chain once a reasonable sum
of money has been transferred [1]. This approach has some downsides: money
must be locked and is unusable for the duration of the channel’s existence, it
only allows the aggregation of transactions between two parties that maintain
a channel, and finally, it is not always useful for other protocols built on top of
block chains (such as Ethereum) where individual updates cannot be aggregated
in a similar fashion.

We suggest an alternative to the longest-chain rule called GHOST, that
changes the conflict-resolution procedure for the block chain. GHOST selects
at each fork in the chain the heaviest subtree rooted at the fork. This proto-
col modification alleviates the above-mentioned security problem, and will help
block-chain-based protocols grow further. A variant of GHOST has been adopted
and implemented by the Ethereum project [4], a second generation distributed
applications platform that has recently received a great deal of attention. To best
utilize the capacity of the block chain all solutions should ideally be combined.
Our own improvement, GHOST, can be seen as a modification which allows an
increase in the protocol’s block chain commitments, which in turn, will allow
more transactions to take place at lower costs.

A second aspect of our work involves the time until the transaction is au-
thorized. As blocks are currently created on average once every 10 minutes, a
given transaction is only included in the chain after a relatively long amount
of time. Several alternative currencies that have forked the Bitcoin source-code
have modified this parameter and have set lower block creation rates (e.g., once
every 12 seconds in the case of FastCoin). We explore and quantify the secu-
rity implications of such choices, from lower resilience to attacks to the required
waiting time for a transaction to be considered accepted.

It is important to note that in addition to the decreased difficulty of a double-
spend attack, several other issues appear at high transaction rates: First, miners
that are better connected to the network enjoy rewards slightly larger than their
share of the hashing power, and second, the selfish mining strategy explored by
Eyal and Sirer [8] can be employed by weaker miners. Both of these issues remain
unsolved by the GHOST protocol alone. In a companion paper [10] we explore
an additional modification (compatible with GHOST) that lowers the advantage
of highly-connected miners, and provides an additional increase in throughput.

2 Basics of the Bitcoin Protocol

The Block Chain. Bitcoin uses a public ledger to record the entire transaction
history, which essentially consists of a sequence of blocks, the block chain. New
blocks are created from time to time and are added successively to the ledger.
Each block contains the transactions that have occurred since the last block
and a cryptographic hash of the previous block in the sequence, which identifies

the predecessor uniquely.3 A transaction is considered confirmed only once it is
contained in some block which appears in this public log.4

The creation rate of blocks is set by requiring each block to contain a proof-of-
work in its header, in the form of a solution to a computationally difficult problem
(finding partial SHA-256 hash collisions). The problem depends on the most
recent block, and is solved by randomly trying different inputs, thus ensuring
some (random) time lag between successful block creation events. The reader is
referred to [12] for a full explanation of the proof-of-work mechanism.

As the block chain, which represents the state of all “accounts”, is kept locally
at each node, it is imperative that any update to the state of accounts will be
propagated to the entire network. Nodes which receive a transaction verify its
validity, and send it, in turn, to all their neighbors. Similarly, nodes which receive
a new block check its validity (i.e., its compatibility with all preceding blocks)
and transmit it to their neighbors.

The Formation and Resolution of Forks. Successive blocks are not nec-
essarily built atop one another, and thus they form a block tree rather than a
single chain (Fig. 3 illustrates such a scenario). One reason for the existence of
forks is the delay in the network: it is possible for two blocks to be created at
(about) the same time by far-away nodes in the network, in which case neither
will point at the other as its parent, and a fork occurs.

When faced with several (internally consistent) block chains each node in
the network is required to adopt only one as the valid account of transactions,
the “main chain”. Bitcoin’s rule is simple: pick the longest chain (or in case of
ties, keep the one you received first). An important property of the longest-chain
selection rule is that as time passes, all the nodes in the network will adopt the
same main chain. Indeed, in order for a fork in the block tree to last, two fractions
of the network need to successively create new blocks at about the same times,
a series of events which becomes rarer as time develops.

In addition to delays, forks can also occur due to a malicious deviation of a
node from the protocol. An attacker may choose to extend any arbitrary block,
and generate forks. The protocol cannot and does not deal with these forks
differently than with delay-induced ones; if the attacker manages to present a
longer chain of blocks, this chain will be accepted by other nodes in the network,
and the previous main chain will be abandoned.

Double-Spend Attacks. This method of overriding the main chain can be
used by an attacker to reverse transactions, a scheme called a “double-spend
attack”. The attacker may pay some merchant and then secretly create a chain
of blocks without this payment that is longer than the network’s. By releasing
his chain he can trigger the replacement in the ledger which effectively erases

3 Hash collisions are so rare that this hash can be regarded as a unique identifier of
the block.

4 Merely being included in a block is not sufficient to fully guarantee the irreversibility
of a transaction. Transactions become increasingly less likely to be reversed as more
blocks are added on top of them to the chain.

the transaction, or redirects the payment elsewhere (such an attack is illustrated
in Fig. 3).

The computational effort required to create each block makes this attack a
difficult undertaking, since the honest nodes usually have a great deal of com-
putational power, and the attacker must get very lucky if he is to replace long
chains.

However, if an attacker holds enough computational power he is able to gen-
erate blocks fast enough to bypass the main chain and override it, according to
the longest-chain selection rule. This enables him to reverse any transaction that
appears in the main chain at will. Specifically, if the attacker has more compu-
tational power than the rest of the network combined, he is able to generate
blocks at a higher rate than the honest nodes and eventually to replace chains
of arbitrary length. This stronger form of attack is known in Bitcoin jargon as
“the 50% attack”.5

3 The Model

We model the Bitcoin network as a directed graph G = (V,E). Each node v
has some fraction pv ≥ 0 of the computational power of the entire network:∑

v∈V pv = 1. Each individual node v in the network generates blocks according
to a Poisson process with a rate of pv · λ, so that the entire network combined
generates blocks at a Poisson process with rate λ (the protocol’s current value,
λ = 1

600 , was chosen by Satoshi at Bitcoin’s inception). We assume that each
edge e ∈ E has a delay de associated with it, which is simply the time it takes
to send a block across it.

In the context of a network under attack, we will use λ = λh as the honest
network’s block creation rate. The attacker’s rate is denoted relative to the
honest network by q · λh > 0, for some 0 < q < 1. In contrast to the honest
network, we assume that the attacker is creating long chains efficiently: its blocks
are always built on top of one another.6 See Appendix A for a more detailed
consideration of the relation between the attacker and the network.

For every block B, we denote by time(B) its (absolute) creation time. The
blocks essentially form a time-developing tree structure that is rooted at the
genesis block – the first block created at the moment of Bitcoin’s inception; we
denote the structure of this tree at time t by tree(t), and by subtree(B) the
subtree rooted at B. Finally, the depth of block B in the tree will be denoted
depth(B).

5 The 50% attack owes its name to Satoshi’s result showing that the main chain is
secure (after sufficient waiting periods) as long as the attacker holds less than 50%
of the computational power. We show in this paper that in fact networks with delays
are more vulnerable and can be attacked with less computational power.

6 This essentially assumes that all computational assets held by the attacker are cen-
tralized and that blocks that it creates are transmitted instantly in its internal
network.

The structure of the block tree is affected by the blocks that nodes point to
as their parent, and extend. Formally, we model this choice as a function s(·)
which maps a block tree T = (VT , ET) to a block B ∈ VT that is to be the parent
of the next block. Every node may posses a different view of the tree (it may not
have heard of all created blocks) and thus applies s to its currently known tree.

The Bitcoin protocol currently requires nodes to build new blocks at the end
of the longest chain that is known to them. Accordingly, we denote by longest(t)
the deepest leaf in tree(t). Unless explicitly stated otherwise, we assume nodes
follow this rule.

The term “main chain” will correspond to the path from the genesis block
to the leaf that is selected for extension (usually longest(t)). The main chain is
considered by nodes to be the single accepted version of transaction history. Its
growth rate is therefore one of the core measures of the system’s performance.
Formally, the time it takes the main chain to advance from length n− 1 to n is
a random variable that we denote as τn. We denote τ = limn→∞

1
n

∑n
i=1 τn, and

β = 1
E[τ] . β is the rate of block addition to the main chain, while λ is the rate

of block addition to the block tree.7

Another parameter embedded in the protocol is the maximal block size (in
KB), denoted by b. We assume throughout the paper that there is high demand
for transaction processing and that blocks are always full to the limit.

Finally, we define the primary measure of Bitcoin’s scalability as the number
of transactions per second (TPS) the system adds to the history (the main
chain), in expectation. We denote by K the average number of transactions per
KB. The TPS is then: TPS(λ, b) := β(λ, b) · b ·K.

4 Reduced Security at High Throughput

In this section we explain why the Bitcoin protocol becomes more susceptible
to double-spend attacks when its throughput is increased. Assume an attacker
creates blocks at a rate of q · λh. If q · λh is greater than the growth rate of
the network’s main chain, β, the attack will always be successful (given enough
time), regardless of the current length of the chain it aims to bypass and replace
(by The Law of Large Numbers). Conversely, if q < β

λh
, the probability of the

attacker’s chain bypassing the main chain decreases exponentially as the main
chain grows in length (See Theorem 10 for the formal proof). We therefore think
of the ratio β

λh
as the “security threshold” of the system.

The throughput of the protocol is affected by the two elementary parameters:
the block creation rate λ, and the block size b. The difficulty of the computational
problem which is required to create a valid block can be lowered in order to
accelerate the block creation process. Similarly, larger blocks can be allowed to
propagate if one wishes to increase the block size. A näıve attempt at increasing
the throughput can be made by simply increasing both parameters. We argue

7 See Theorem 54, Chapter 2 in [17] for the compatibility of these two interpretations
of β.

that both of these modifications lead to an increased number of forks in the block
tree, which in turn leads to a reduction of the security threshold of the system.
In other words, attackers can perform effective attacks with less computational
power once the throughput is increased. The qualitative tradeoffs between these
parameters are depicted in Fig. 2.

Block size (KB)
0 50 100 150 200 250 300 350

T
im

e
(s

ec
)

0

10

20

30

40

50

25%

50%

75%

Fig. 1. The relation between the block
size and the time it took to reach 25%
(red), 50% (green), and 75% (blue) of
monitored nodes, based on data pro-
vided by Decker and Wattenhofer [7].

⇨

⇨ ⇨

Throughput

(TPS)

Block rate

()

Block size

(b)

Forks in

block tree

Security

(/)

⇨⇨

Fig. 2. A general view of tradeoffs in
the Bitcoin protocol. Increasing the
block size or the block rate causes an
increase in the TPS, but also decreases
the security from double-spend attacks.

Larger Blocks. Indeed, while a node has not yet learned of the latest addition
to the main chain, any block that it creates will not add to that chain, but
rather contribute to a less updated alternative branch. Thus as the block size is
increased, blocks naturally take longer to propagate through the network, hence
more forks occur. This observation is well supported by a measurement study
conducted by Decker and Wattenhofer [7] who have measured block propagation
delays in the Bitcoin network. Figure 1, which is based on raw data that they
have generously shared with us, depicts a clear linear relation between the block
size and its propagation time.

Accelerated Block Creation. Similarly, if block creation is accelerated, more
blocks are being created by the honest network (larger λh) while the most recent
block in the main chain is propagated. Again, these blocks will often be created
by nodes that are not fully up to date and will not extend the longest chain.
The attacker on the other hand, also creates blocks faster (at a rate of q · λh),
but does not suffer from a loss of efficiency.

Reduced Security. In both cases described above, blocks that are created do
not always contribute to the lengthening of the main chain, which makes it easier
for an attacker to replace it.

Figure 3 illustrates a scenario in which a highly forked block tree was created
by the honest network. The attacker secretly creates a chain of 6 blocks (denoted
1A, 2A,. . . , 6A) which is clearly longer than the network’s longest chain (ending
in block 5B). If block propagation was faster (in relation to the creation rate),
all blocks in the honest network’s tree would form a single long chain and would
not be overtaken by the attacker.

0

1B

2D

2C

3E

4C 5B

4B

3C

3B

2A 3A 4A 5A1A

2B

3F

6A

3D

attacker's

secret chain

main chain

according to

"longest" rule

main chain

according

to GHOST

Fig. 3. A block tree in which the longest chain and the chain selected by GHOST
differ. An attacker’s chain is able to switch the longest chain, but not the one selected
by GHOST.

5 The Greedy Heaviest-Observed Sub-Tree (GHOST)

In this section we present our main contribution to the protocol: a new policy for
the selection of the main chain in the block tree. The advantage of this suggested
change to the protocol is that it maintains the security threshold for successful
50% attacks at 1 (rather than β

λh
), even if the network suffers from extreme

delays and the attacker does not. This allows the protocol designer to set high
block creation rates and large block sizes without the fear of approaching the
50%-attack cliff edge, which in turn implies that a high transaction throughput
can be securely maintained.

The basic observation behind the protocol modification that we suggest, is
that blocks that are off the main chain can still contribute to its weight. Consider,
for example, the block tree in Fig. 3. Block 1B is supported by blocks 2B, 2C,
and 2D that extend it directly, and include it in their chain. Similarly, blocks
3C, 3D, and 3E support both 1B and 2C as part of their chain. The heaviest
subtree protocol we suggest makes use of this fact, and adds additional weight
to blocks, helping to ensure that they will be part of the main chain.

Recall our definition from Sect. 3; any node chooses the parent of its next
block according to a policy s(T), that maps a tree T to a block in T which
essentially represents the main chain. Formally, our new protocol is a new parent-

selection policy. This new policy redefines the main chain, which is what should
be regarded as the valid branch of transaction history.

For a block B in a block tree T , let subtree(B) be the subtree rooted at B,
and let ChildrenT (B) be the set of blocks directly referencing B as their parent.
Denote by GHOST (T) the parent-selection policy we propose, defined as the
output of the following algorithm.

Algorithm 1. Greedy Heaviest-Observed Sub-Tree (GHOST)
Input: Block tree T

1. set B ← Genesis Block
2. if ChildrenT (B) = ∅ then return(B) and exit
3. else update B ← argmax

C∈ChildrenT (B)

|subtreeT (C)|8

4. goto line 2

The algorithm follows a path from the root of the tree (the genesis block) and
chooses at each fork the block leading to the heaviest subtree. In the tree depicted
in Fig. 3, for instance, the subtree of block 1B contains 12 blocks, whereas that
of 1A contains only 6. The algorithm will thus pick 1B as belonging to the main
chain, and proceed to resolve the forks inside subtree(1B). This will result the
choice of blocks 0, 1B, 2C, 3D, 4B as the main chain of the tree (and not the
longest chain, ending in block 5B). This makes forks inside the subtree rooted at
1B of no consequence to the weight of block 1B itself — every addition of a block
to subtree(1B) makes it harder to omit it from the main chain. In particular,
when the attacker publishes its 6-blocks long secret chain, the same blocks as
before remain in the main chain.

5.1 Basic Properties of GHOST

It is imperative to first show that all nodes eventually adopt the same history
when following GHOST. For every block B define by ψB the earliest moment at
which it was either abandoned by all nodes, or adopted by them all. We call the
adoption of a block by all nodes the collapse of the fork.

Proposition 2 (The Convergence of History). Pr(ψB <∞) = 1. In other
words, every block is eventually either fully abandoned or fully adopted. Moreover,
E[ψB] <∞.

Proof. Let D be the delay diameter of the network. Assume that at time t >
time(B) block B is neither adopted by all nodes nor abandoned by all of them.
Denote by Et the event in which the next block creation in the system occurs
between times t+D and t+2D, and then no other block is produced until time
t + 3D. We argue that once such an event occurs, block B is either adopted or
abandoned by all nodes. Indeed, between time t and t+D all nodes learn of all

8 We are in fact interested in the subtree with the hardest combined proof-of-work,
but for the sake of conciseness, we write the size of the subtree instead.

existing blocks (as no new ones are manufactured), and therefore each pair of
leaves (of the block tree) that have nodes actively trying to extend them must
have equal weight subtrees rooted at some common ancestor. A single block
is then created which breaks these ties, and another D time units allow it to
propagate to all nodes, which causes them to switch to a single shared history.
Notice that Pr(Et) is uniformly (in t) lower bounded by a positive number, as
it doesn’t depend on t (as the exponential distribution is memoryless). Hence
the expected waiting time for the first Et event is finite (see “Awaiting the
almost inevitable” in [19], Chapter 10.11). Finally, the stopping time ψB is upper
bounded, by definition, by the waiting time for the first Et, implying E[ψB] <∞.

⊓⊔

We now show the main advantage of the GHOST chain selection rule, namely,
that it is resilient to 50% attacks, even at high rates or with significant delays
in the network: By waiting a sufficiently long period of time τ after the block’s
creation, the probability that its status will change from “accepted” to “aban-
doned” can be made arbitrarily small.

Proposition 3 (Resilience to 50% Attacks). Assume the attacker’s block
creation rate is q · λh, and 0 ≤ q < 1. The probability that a block B will be off
the main chain sometime after time(B)+ τ , given that it was in the main chain
at time(B) + τ , goes to zero as τ goes to infinity.

Contrast the statement above with the security threshold introduced in Sect. 4,
where q < β

λh
was required to guarantee resilience against 50% attacks. This

proposition suggests that in any network following the GHOST rule, the secu-
rity threshold is 1.

Proof (of Proposition 3). The event in which B is eventually discarded from
the main chain is contained in the event that a collapse has yet to occur (i.e.,
ψB ≥ time(B)+τ). Relying again on the finiteness of E[ψB] (Proposition 2), and
applying Markov’s inequality, it follows that the probability that by time(B)+τ ,
B was either already abandoned or already adopted by all (honest) nodes goes
to 1, as τ goes to infinity. In the former case, the proposition holds trivially.
In the latter case, blocks are now built in B’s subtree at the rate of λh, which
is higher than qλh. Thus, as τ grows, the gap between the size of subtree(B)
and the attacker’s chain grows, making the probability of the attack succeeding
sometime in the future arbitrarily low (The Law of Large Numbers). ⊓⊔

The Rate of Collapse in GHOST. In Subsection 5.1 we have discussed
the collapse time ψB for any block B and its implications to the growth and
convergence of the main chain in GHOST. Long living forks imply longer waiting
times until the entire network contributes confirmations to a block, and further
implies long waiting times for transaction authorization. It can prove useful to
further investigate how fast the collapse at B occurs. We do this for a simple
model including only two forks, each with equal contributing computational
power. Even this seemingly simple case proves to be non-trivial.

Theorem 4. Consider a network with two nodes, u and v, that equally create
blocks at a rate of λ/2, which are connected by a single link with delay d. For any

block B, E[nB] ≤
(dλ)2

8
+
dλ

2
, where nB := |subtreeT (B)| for T = tree(ψB).

The theorem gives an upper bound for the special configuration of two nodes;
we conjecture, however, that it is the worst case, and that in general setups
collapses occur even faster. Its proof appears in Appendix B.

6 Main Chain Growth in GHOST and in Longest-Chain

In this section we begin to systematically compare the two chain selection rules.
Central to this comparison is an analysis of the growth rate of the main chain (β)
under each one. Since this growth rate is highly dependent on the exact topology
of the network which is both unknown and extremely difficult to measure, we
take a dual approach: First we bound the rates analytically from above and
below. Second, we simulate networks with randomly sampled overlay topologies
and measure the resulting block-trees. We then go on to discuss the implications
of these results in terms of security, throughput, and resource use of each rule.

6.1 A Lower Bound

We begin our analysis with the following approach: suppose that a cluster of
relatively well connected nodes (with delay diameter D) contains a fraction
0 ≤ α ≤ 1 of the computational power of the entire network. In this case,
blocks created within this sub-network propagate internally relatively quickly,
and we can bound the rate of growth of the main chain from below. The bounds
are tight, both for longest-chain and for GHOST, and thus form a good basis
for comparison.

Lemma 5 (Longest-Chain & Bounded Delay). Let G=(V,E) be a network
graph (a sub-graph of the entire network) which generates blocks at a rate λ′ =
α ·λ with delay diameter D. Then under the longest-chain rule, the rate at which
the longest chain grows β(λ) ≥ λ′

1+λ′·D .

Lemma 6 (GHOST & Bounded Delay). Let G=(V,E) be a network graph
(a sub-graph of the entire network) which generates blocks at a rate λ′ = α·λ with
delay diameter D. Then under the GHOST rule, the rate at which the longest
chain grows β(λ) ≥ λ′

1+2λ′·D .

Both Lemma 5 and Lemma 6 can be shown to be tight. The bound is achieved
in a complete graph with n nodes, n→∞, where the delay on all edges is exactly
D, and each node has 1/n’th of the computational power. This lower bound can
thus be thought of as approximating the ideal decentralized network, where the
computational power is well distributed among many equidistant nodes.

Lemma 5 follows, intuitively, from the fact that after some block U at depth n
was created and sent to all nodes (D seconds), it takes in expectation 1

λ seconds

for the next block U ′ to be created. As the creator of U ′ was certainly aware
of the creation of U , its depth must be at least n + 1. The rate is thus lower
bounded by 1

D+ 1
λ′

= λ′

1+λ′·D . Refer to Appendix C for a formal proof.

As GHOST does not select the longest chain, it can be expected that the
rate of growth of its main chain will be somewhat lower than in the longest-
chain rule. This is indeed the case. The loss in growth rate, however, is relatively
minor, and unlike in the longest-chain rule, has no bearing on the security of
GHOST. Lemma 6 follows as an immediate consequence of the following claim,
which is proven in Appendix D.

Claim 7. Let B be a block in tree T in a network as in Lemma 6, then regardless
of history, the expected waiting time for the creation of the last child of B is upper
bounded by 2D + 1

λ′ .

Application to Throughput (Under Longest-Chain) What recommenda-
tions should we give the designer of the system who wishes to set the protocol’s
parameters, given that the network’s topology is unknown? We now show how
some rather limited knowledge of the network’s topology could be used by the
designer to guarantee a certain measure of security.

Assume we have managed to measure the delay diameter of some fraction of
the network, namely, the maximal time D(b) it takes a block of size b to arrive
at some fraction α of the network. Following the results depicted in Fig. 1, we
adopt a linear model of the delays; we thus assume that D(b) is of the form
D(b) = Dprop+Dbw · b. Notice that Dprop is a measure of aggregate propagation
delay, and Dbw is an aggregate measure of bandwidth in units of seconds per
KB.

Lemma 8. Assume there exists a sub-network with a block creation rate of αλ
and delay diameter D(b), in a network following the longest-chain rule. Then for

any x ∈
(
0, K

Dbw

)
, the protocol is able to achieve both a throughput of at least x

TPS and a security threshold of at least α ·
(
1− x·Dbw

K

)
, through a right choice

of the parameters b and λ.

Proof. By Lemma 5, the main chain grows at a rate of at least 1
1

αλ+D(b)
. By

the definition of the throughput, TPS = b · K · β ≥ K
1

αλ
+Dprop

b +Dbw

. For any

x ∈
(
0, K

Dbw

)
, there exists a large enough b = bx such that the RHS equals x

(fixing λ), thereby guaranteeing TPS ≥ x. The lower bound on β then implies:

β

αλ
≥ 1

1 + αλ (Dprop + bx ·Dbw)
= 1− 1

1
αλ·bx·Dbw

+
Dprop

bx·Dbw
+ 1

= 1− x ·Dbw

K
.

⊓⊔

Any evaluation of the real Bitcoin network’s behavior under higher through-
put requires full knowledge of the topology of the network. Unfortunately, the

structure is both unknown (partly because it is hard to measure, but also be-
cause miners attempt to keep their connections secret) and keeps shifting as
nodes connect and disconnect. To obtain an order of magnitude estimation we
apply Decker and Watenhoffer’s measurements of Bitcoin’s network to the bound
from Lemma 8.

The best linear fit to the results, for α = 0.5, yields a slope of Dbw = 0.066.
This implies, for instance, an achievable throughput of 15.15 TPS, coupled with
resilience to attackers with q up to 0.25 computational power.

Application of the Bound to GHOST (Efficiency) We have shown in
Proposition 3 that the security threshold in a network following GHOST is al-
ways 1. While this means there is no limiting security constraint (contrary to the
longest-chain case), the throughput cannot grow limitlessly: the transmission of
many blocks (only a fraction of which contribute to the main chain) consumes
bandwidth. Therefore, the ratio β

λ is still of interest, not in a security context,
but rather as a measure of the network’s efficiency in its resource utilization.

Following the same method as previously, one can apply the linear delays
model to Lemma 6 and show that the network’s efficiency under a given through-
put is at least α ·

(
1− TPS·2·Dbw

K

)
. E.g., the network is able to process 9.09

transactions per second, while maintaining an efficiency of at least 0.2.

6.2 An Upper Bound

We proceed now to give upper bounds on the main chain’s growth rate. The
idea of the upper bound is to locate a partition of the network graph, such that
blocks take at least d time units to cross the partition (i.e., all links crossing
the cut have delay at least d). Given such a partition the network is inherently
inefficient to some degree, as the communication delay between the two parts
may cause forks. The following theorem formalizes this:

Theorem 9. Let G=(V,E) be the network graph. Let S, T ⊂ V be a partition of
the nodes such that ∀s ∈ S, ∀t ∈ T we have d{s,t} ≥ d, and let pS , pT (pS ̸= pT)
be the fraction of computational power owned by nodes in S, T correspondingly.
Then both under longest-chain and under GHOST, the main chain’s growth rate

is bounded from above as follows: β(λ) ≤ (pSλ)2epSλ2d−(pTλ)2epT λ2d

pSλepSλ2d−pTλepT λ2d .

The theorem is tight – networks consisting of only two nodes add blocks
to the main chain at exactly this rate. We defer the rather involved proof to
Appendix E.

6.3 Simulation Results

We simulated the growth of the main chain in networks roughly emulating the
topologies of Bitcoin’s P2P overlay network for nodes adhering either to longest-
chain or to GHOST. Following a behavior similar to the default in Bitcoin’s

reference client, each node initiates links to 8 uniformly selected neighbors (and
accepts all links others initiated). We simulate a network with 1000 nodes, and
assign computational power uniformly at random. The propagation delays on
the links were sampled from a normal distribution (µ = σ = 100 milliseconds).
Similarly, the bandwidth of each node was drawn from a normal distribution
(µ = 1,σ = 0.2 MB). Both values were redrawn for negative results. The system
was later allowed to evolve as blocks were propagated by nodes. Figure 5 depicts
the security threshold measured in the system as a function of the block creation
rate. Figure 4 illustrates the resulting TPS in both cases, and shows that the
loss in efficiency of network resources caused by following the GHOST rule is
indeed relatively small. See further discussion in Subsection 6.1.

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

900

Block creation rate ()

T
P

S

Longest Chain

GHOST

Centralized network (theoretical)

Fig. 4. TPS(λ)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
e
cu

ri
ty

 t
h
re

sh
o
ld

 (
q
)

Block creation rate ()

Longest Chain Rule

GHOST Rule

Fig. 5. Security(λ)

7 Security Against Weak Attackers

We have so far considered only the effect that delayed block propagation has
on the 50% attack. Even attackers with a modest block creation rate can still
succeed in a double-spend attack if they are lucky enough to generate many
blocks in a quick burst; Satoshi, in his original paper, analyzes this threat. His
analysis does not apply, however, to networks with non-negligible delay, and so
we revisit this question.

The Acceptance Policy in Longest-Chain. The process of transaction au-
thorization is defined by an acceptance policy chosen by the recipient of funds.
Formally, the policy can be described as a function n(t, r, q), where r is the risk
the recipient is willing to tolerate, q the upper bound on the attacker’s fraction
of computational power, and t the time that elapsed since the transaction was
broadcast to the network. If the transaction receiver observes n blocks (“confir-
mations”) atop his transaction by time t, he approves it only if n ≥ n(t, r, q), and

otherwise waits for n to increase.9 The policies for the GHOST and longest-chain
rules differ. Notice however, that in both cases, if t seconds have passed since
the transaction was received, the probability that the attacker has completed k

blocks is ζk := e−qλht (qλht)
k

k! . Thus, given some n, t we have a probability dis-
tribution on the initial gap between the attacker and the honest network. The
following theorem bounds the probability that an attacker will close this gap.

Theorem 10. Consider a network G with delays. Let 1/β1 be an upper-bound
on the expected waiting time for the next lengthening of the main chain, for all
possible states of the system. Let qλh < β1 be the creation rate of the attacker
(according to a Poisson process), and suppose the gap between the network’s
longest chain and that of the attacker is X0 blocks. Then the probability that the
attacker will succeed in extending its chain to be longer than the network’s is at

most
(

qλh

β1

)X0+1

.

The theorem is proved in Appendix F. This result justifies the following
acceptance policy:

n(t, r, q) := min
n

{
n∑

k=0

ζk ·
(
qλh
β1

)n−k+1

+

∞∑
k=n+1

ζk ≤ r

}

The first term inside the parenthesis corresponds to the chance of the attacker
closing the gap (at some future time) given that at time t he is behind by n− k
blocks. The second term aggregates the probability that its chain is long enough
at the moment of acceptance.

The Acceptance Policy in GHOST. In GHOST, a block B gains confirma-
tions from all blocks in its subtree. Once a collapse to a single subtree occurs,
further confirmations are added at a full rate of λh. This justifies the following
policy:

n(t, r, q) := minn

{
(1− ηtB) ·

(∑n
k=0 ζk ·

(
qλh

λh

)n−k+1

+
∑∞

k=n+1 ζk

)
+ ηtB ≤ r

}
where ηtB is the probability that at time t, block B has yet to be included

in the main chain of the entire honest network. The formulation given above
includes the event of a collapse. Subject to that occurrence, block B gains con-
firmations at a faster pace.

8 GHOST Implementation Details

Below we outline some additional details about the use and implementation of
the GHOST chain selection rule.

Links to Multiple Parents. As our protocol requires knowledge of off-chain
blocks by all nodes, we propose that their headers (but not necessarily their

9 Previous work, such as [12, 16], considered simpler policies that did not take elapsed
time into account.

entire contents) be propagated to all nodes. Information about off-chain blocks
can then be embedded inside each block by simply listing the hashes of other
childless blocks it is aware of.

Deployment. At low block creation rates, and with small block sizes, both
GHOST and the conventional longest-chain rule behave the same: all blocks
will simply be on a single long chain. Differences between the two rules appear
only at high throughputs. The adoption of GHOST can therefore be gradual at
low transaction rates–nodes will be partially compatible with the longest-chain
version as long as transaction rates do not increase (additional references to block
headers can be placed inside fields that the regular protocol currently ignores,
and so backward compatibility can be maintained). This point, however, is of
little importance. Increasing Bitcoin’s block size or the block creation rate will
require a hard fork in the protocol. Consequently, for these changes to take place
a majority of the mining power needs to accept them.

Retargeting (Difficulty Adjustment). Given potentially complex relations
between the growth rate of the main chain and the rate of created blocks, and the
fact that GHOST depends more on the total rate of block creation, we suggest
a change in the way automatic difficulty adjustments to the proof-of-work are
done. Instead of targeting a certain rate of growth for the longest chain, i.e.,
β (which is Bitcoin’s current strategy), we suggest that the total rate of block
creation be kept constant (λ), which can be done, as the information on the
entire block tree is available following the links to all ancestor blocks. Notice
that the relation between β and the difficulty is highly complex, and so Bitcoin’s
current targeting mechanism will malfunction at high rates.

Fees and Minted Coins. While GHOST does make use of off-chain blocks to
secure the protocol, we believe it is best to allocate minted coins only to the
creators of blocks that are on the main chain, similarly to how the longest chain
rule works today. The rate of minting can be adjusted independently from the
block creation rate (but in a very similar way) by adjusting the amount of minted
coins per block given the measured number of blocks in the recent past (e.g.,
in a 2 week window). A companion paper on Inclusive protocols [10] discusses
the inclusion of transactions from blocks that are off the main chain (and the
allocation of related fees).

Preventing Amplified Denial of Service Attacks. As each block in Bitcoin
is sent to the entire network by the nodes themselves, any burst of blocks may
disrupt the network. Attackers are naturally limited in their ability to create
recent blocks due to the proof-of-work requirement, but may try to create blocks
off-chain that are built upon blocks in the distant past (when the difficulty level
was low). This issue is handled by the current implementation using checkpoints
(points in the chain before which no additional off-chain blocks are accepted).
Other mechanisms that involve probabilistic proofs of combined difficulty (for
large chains that go back too far in the past) have also been suggested. Both
solutions can be adapted to GHOST as well.

9 Additional Related Work

The original security analysis done by Satoshi [12] has been improved in a
whitepaper published by Meni Rosenfeld [16]. Several papers have looked at
incentive concerns related to the operation of the protocol, examining issues re-
lated to transaction propagation [6], selfish mining [8], and the distribution of
rewards within mining-pools [15]. Other works on Bitcoin have looked at its pri-
vacy aspects [13, 5], including analysis of its transaction graph [14] which allows
to de-anonymize some of its users. The Zerocoin protocol has been offered as a
way to improve anonymity [11].

Our work deals, among other issues, with enabling fast confirmations for
transactions in the network. A paper by Karame et. al. discusses similar issues,
that relate to possible attacks on nodes that accept zero-confirmation transac-
tions [9]. They suggest several countermeasures that may help avoid such attacks.
Their work does not deal with an attack by an adversary with a significant block
creation rate, which can compute alternative chains on its own.

A paper closely related to ours is one that was published by Decker and
Wattenhofer, in which they present a measurement study of message propagation
times in the Bitcoin network. They associate delays with the creation of forks in
the block-tree, and with an increased vulnerability to the 50% attack [7]. As far
as we are aware, no other work addresses the issue of Bitcoin’s scalability, or its
security in a network with delayed block propagation.

10 Conclusion

This paper has focused primarily on the effect network delays have on Bitcoin’s
security from double-spend attacks. In this context we presented GHOST, our
suggestion for the modification of the protocol, which helps secure Bitcoin when
processing transactions at high rates. Regarding the current state of the protocol,
we have given some theoretical security guarantees that can be applicable even if
limited information is known about the network topology. Our results underscore
the importance of the health of the network to Bitcoin’s security and scalability.

Many additional research questions should be addressed in light of our re-
sults: How should the block creation rate and block size dynamically adjust to
changing network conditions? Additionally, in Bitcoin so-called Simplified Proto-
col Verification nodes can operate without downloading the entire block chain. If
we are to increase the number of blocks per second, their job becomes harder. It
is therefore of great interest to create light nodes that can, for example, verify the
block chain probabilistically, without needing to download all headers. Finally,
it can be shown that in networks with delay that operate at high rates, large
miners get more than their fair share of the blocks, an effect that skews rewards
in favor of large miners and slowly pushes the system towards a more centralized
one. One way to mitigate the problem, which can be applied to GHOST as well,
is presented in a companion paper on Inclusive protocols [10].

11 Acknowledgements

The authors were supported in part by the Israel Science Foundation (Grants
616/13, and 1773/13), and by the Israel Smart Grid (ISG) Consortium.

References

1. https://bitcoinj.github.io/working-with-micropayments
2. https://blockchain.info/charts/n-transactions
3. https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
4. https://www.ethereum.org/
5. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in bitcoin. In: Financial Cryptography and Data Security, pp. 34–51.
Springer (2013)

6. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In:
The 13th ACM Conference on Electronic Commerce. pp. 56–73. ACM (2012)

7. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
13th IEEE International Conference on Peer-to-Peer Computing (P2P), Trento,
Italy (September 2013)

8. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security, pp. 436–454. Springer (2014)

9. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: The 2012 ACM conference on Computer and communications security.
pp. 906–917. ACM (2012)

10. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Financial Cryptography and Data Security. Springer (2015)

11. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: IEEE Symposium on Security and Privacy (2013)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
13. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security

and Privacy in Social Networks, pp. 197–223. Springer (2013)
14. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.

In: Financial Cryptography and Data Security, pp. 6–24. Springer (2013)
15. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint

arXiv:1112.4980 (2011)
16. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009 (2014)
17. Serfozo, R.: Basics of applied stochastic processes. Springer (2009)
18. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited. arXiv preprint

arXiv:1605.09193 (2016)
19. Williams, D.: Probability with martingales. Cambridge university press (1991)

A Where Is The Attacker in Longest Chain?

From a practical perspective, we must remember that a node listening to the
Bitcoin network does not really know the amount of computational power the
honest nodes in the network possess. In particular, the attacker may be building

blocks along with the network up until the time of the attack, or he may not.
Therefore, all that is observed is some amount of computational power which
triggers the reported block creation rate λrep. We now ask ourselves what is the
worst case when using the longest-chain rule? An attacker who participates or
one that does not? Also, what is the right security threshold in terms of λrep
(rather than λh which is unknown)?

We begin with the assumption that the attacker has a fraction q of the
computational power of the honest network. Denote by λa, λh the block creation
rate of the attacker and the honest nodes respectively, and by λ = λa + λh
their joint rate. Our assumption is λa < qλh as before. λrep is the observed
rate of block creation in the system (before the attack), which is in the range
[λh, λh + λa]. The following proposition shows that for a given threshold q it is
enough to use λrep as a measure of the honest network’s creation rate, as the
attacker would only make it harder on itself if it joined the rest of the network
and generated blocks before the attack. This is quite counter-intuitive, as the
attacker that adds to the rate before the attack fools the network into thinking
it is stronger. In reality, it increases the number of its blocks but lowers the
network’s efficiency, which is the true measure of resilience to attacks.

Proposition 11. If the network’s observed block rate is λrep, for a given block
size, and β(λrep) ≥ 2·q

1+qλrep, then the network is secure against an attacker with
computational power lower than qλh. Furthermore, an attacker is most effective
if it does not participate in block mining before the attack.

Proof. If a fraction f of the attacker’s blocks were included in λrep prior to the
attack, then λrep = λh + f · λa. I.e., λh = λrep − f · λa = λrep − fqλh.

Observe that every block that the attacker publishes before the attack could
only increase the length of the main chain, and that the attacker’s maximal
contribution to the chain’s length is the number of blocks that he published.
Therefore: β(λh) ≥ β(λrep)− f · λa. We obtain:

β (λh) ≥ β(λrep)− f · λa ≥
2 · q
1 + q

· λrep − f · λa =

2 · q
1 + q

· (λh + f · λa)− f · λa =
2 · q
1 + q

· λh −
(
1− 2 · q

1 + q

)
· f · λa >

2 · q
1 + q

· λh −
(
1− 2 · q

1 + q

)
· f · q · λh ≥

2 · q
1 + q

· λh −
(
1− 2 · q

1 + q

)
· q · λh =

(
2 · q
1 + q

−
(
q − 2 · q2

1 + q

))
· λh =(

2 · q
1 + q

+
2 · q2

1 + q
− q

)
· λh =

2 · q + 2 · q2 − q − q2

1 + q
· λh = q · λh > λa.

In conclusion, β(λh) > λa. The attacker’s chain thus grows slower than the
longest chain in the honest network’s tree.

The attacker is most efficient if he avoids publishing his blocks before the
attack (f = 0), because these blocks can be used by him to increase the success-
probability of double-spending. More on this in [18]. ⊓⊔

B Proof of Theorem 4

Theorem 4:
Consider a network with two nodes, u and v, and equal block creation rates λ/2,
which are connected by a single link with delay d. For any block B, E[nB] ≤
(dλ)2

8
+
dλ

2
, where nB := |subtreeT (B)| for T = tree(ψB).

Proof. We define a state xn representing the time gap between the of creation
the n’th block by each of the nodes, in favor of u.

It is clear that whenever |xn| > d, a collapse has occurred, as this means a
message from u about a new block has arrived at v without the latter creating
a corresponding block in time, or vice versa.

In order to count nB , we recursively express the expected number of ad-
ditional blocks in subtree(B), given the current state xn. We denote this by
h(xn).

Given that the time gap xn+1 is positive, its value depends on the next
block creation of v, and thus follows an exponential distribution with rate λ/2;
the same argument applies to the case xn+1 < 0. If |xn+1| < d, the expected
addition to subtree(B) (conditioned on the current state) is simply 1+h(xn+1),
otherwise, it is exactly 0. We express h() as a sum of two functions f(), g(). One
for the case in which the time gap increases in favor of u (f), and one for the
case in which it decreases (g). By symmetry, the probability for these events is
1
2 . This justifies the following equations for f , g and h:

f(x) :=
1

2

d∫
x

µe−µ(t−x)(h(t) + 1)dt = eµx
d∫

x

µe−µth(t) + 1

2
dt

g(x) :=
1

2

x∫
−d

µe−µ(x−u)(h(u) + 1)du = e−µx

x∫
−d

µeµu
h(t) + 1

2
du

h(x) = f(x) + g(x).

Differentiating these functions we obtain,

df

dx
= µeµx

d∫
x

µe−µth(t) + 1

2
dt+ eµx · −1 · µe−µxh(x) + 1

2
=

µf(x)− µh(x) + 1

2
= µf(x)− µf(x) + g(x) + 1

2
=

µ

2
(f(x)− g(x)− 1).

Similarly,

dg

dx
=
µ

2
(f(x)− g(x) + 1)

We thus arrive at the following linear non homogeneous differential system:(
f
g

)′

=

(
µ
2 −

µ
2

µ
2 −

µ
2

)
·
(
f
g

)
+

(
−µ

2
µ
2

)
,

with the following boundary conditions:

f(d) = 0, g(−d) = 0.

Solving this system yields:

f(x) =
1

4

(
(dµ)2 − (xµ)2 + 2dµ− 2xµ

)
g(x) =

1

4

(
(dµ)2 − (xµ)2 + 2dµ+ 2xµ

)
h(x) =

1

2

(
(dµ)2 − (xµ)2 + 2dµ

)
As the state at which the competition begins is x = 0, by symmetry, we

get that the expected number of blocks until a collapse is h(0) = (dµ)2

2 + dµ
blocks. ⊓⊔

C Proof of Lemma 5

Lemma 5:
Let G=(V,E) be a network graph (a sub-graph of the entire network) which gen-
erates blocks at a rate λ′ = α ·λ with delay diameter D. Then under the longest-
chain rule, the rate at which the longest chain grows β(λ) ≥ λ′

1+λ′·D .

Proof. We follow a sequence of block creation events for blocks U0, U1, U2, . . .
such that each block Ui+1 is the first block to be created after D seconds have
passed from the creation of the previous block Ui (so that there has been suf-
ficient time to send Ui to all nodes in the network), i.e., the first block B for
which time(B)−D > time(Ui). Let us now make the following claim.

Claim 12. Let U0, U1, U2, . . . be a series of blocks that were created at least D
time units apart. Then for all n ∈ N: Depth(Un)−Depth(U0) ≥ n.

The claim can be proven by induction. It is trivially true for n = 0. Now we
assume that the claim is true for n = k, and show it is true for n = k + 1. by
time(Uk) we have Depth(Uk)−Depth(U0) ≥ n. Then, consider the time at which
block Uk+1 is created. The node that created it has done so after hearing about
block Uk, it therefore has a chain that is at least of length k (by the induction

assumption and because Chains can only grow or be replaced by longer chains).
Therefore Uk+1 is built at depth that is at least 1 more than Uk.

Now that we have established the claim, we can turn to calculating the
lower-bound of β. Denote by Xi = time(Ui) − time(Ui−1) the random variable
representing the time between block creations. Notice that the Xi’s are i.i.d.
random variables (because the time interval they denote is exactly D time units
for the block to spread plus an exponentially distributed waiting time for the next
block’s creation somewhere in the network). Also note that β ≥ E[1n

∑n
i=1Xi]

−1,
as the chain grows by at least n during the time

∑n
i=1Xi. We therefore have

β ≥ 1
E[X1]

. Additionally, we know that E[X1] = D+E[Y], where Y is a random

variable with an exponential distribution with parameter λ′. As E[Y] = 1
λ′ we

have: β ≥ 1
D+ 1

λ′
= λ′

1+λ′·D . ⊓⊔

D Proof of Claim 7

Claim 7:
Let B be a block in tree T in a network as in Lemma 6, then regardless of history,
the expected waiting time for the creation of the last child of B is upper bounded
by 2D + 1

λ′ .

Proof. Let C be the first block created after D seconds have passed from B’s
creation. Denote by τ the time from B’s creation until C has been created and yet
another D seconds elapsed. We argue that E[τ] ≤ 2D+1/λ′. This is easy to see:
It takes 1/λ′ seconds in expectation to create block C, an event which can only
occur after D seconds have passed from B’s creation. Then, we deterministically
wait another D seconds to propagate C to the entire network.

We claim that after τ seconds fromB’s creation,B will have no more children.
Let us examine the two possible cases:
Case I: C is a descendant of B. Once C has been propagated to all nodes, no
node considers B a leaf, and the GHOST chain selection rule only extends leaves
(in the subtree known to the extending node).
Case II: C is not a descendant of B. Because B was propagated to all nodes
before C was created, the node that extended C was well aware of B, but did
not extend it. It therefore had a strictly heavier subtree than B is part of after
the creation of C. D seconds later, block C is known to all other nodes, along
with its entire supporting subtree. In this case, B will not be extended directly
either – nodes have switched away from B if no other children extend it, or have
switched to its descendants if it does have children. ⊓⊔

E Proof of Theorem 9

Proof. In the above setting, v and u create blocks separately, and whenever one
completes a block it sends the message with its new block through the link,
to arrive at its counterpart d seconds later; in these d seconds the node still

continues with the attempt to build new blocks and lengthen its own version
of the main chain. Thus messages about blocks of the same depth (which were
created by u and v roughly at the same time) may simultaneously be traveling
in opposite directions on the link, causing a fork in the block-tree.

Note that the block-tree is actually a binary-tree — at any point of time their
are at most two branches not abandoned, as the two-node network contains at
most two conflicting world views. Among two candidate chains, the heaviest one
and the longest one coincide; the analysis below applies thus equally to a network
following the “longest chain” rule and to that following GHOST.

In order to count the number of blocks that fail to enter the main chain, we
notice that such an event occurs precisely when two blocks of the same height
have been created.

Consider a block U of node u. We say that the window of U is created d
time units before U ’s creation, and is gone d time units after it. Notice, that
a block U is built upon any of v’s blocks that was created before U ’s window
was created, and also that block U arrives at node v exactly at the end of U ’s
window.

We say that U is “threatened” at a given time, if U ’s window has been
created, and the chain at v is of length depth(U) − 1 (this time interval is
contained in U ’s window). During this period, the next block created by v will
be of the same depth as U and one of the blocks is wasted. We define open as
the time that elapsed from U ’s window’s creation to the moment at which it
becomes threatened, and define close as the time that elapsed from its window’s
creation until it ceases to be threatened.

Notice that the closure of U can occur in two ways: either 2d time has passed
from the U -window creation, and v received a message containing U , or v gener-
ated a competing block of the same height before that. Therefore, the difference
between the moment U is opened and the moment it is closed is between 0 and
2d. In addition, notice that two blocks of u cannot be simultaneously threatened
(v’s chain cannot be shorter by 1 from both their depths at the same time).

Assuming block Un’s window was created at a time that we shall denote as
time 0, open(Un) and close(Un) are random variables taking values in [0, 2d], for
whom we have close(Un) ≥ open(Un). The distribution of open(Un) is composed
of a continuous part on the region (0, 2d], and a discrete part on the atomic
event {open(Un) = 0}. We denote the former by αn(x), for x ∈ (0, 2d], and the
latter by αn,0. Similarly, close(Un)’s probability distribution has a continuous
part which we denote ωn(x) on [0, 2d), and a discrete part ωn,2d for the atomic
event {close(Un) = 2d}.10

We denote by fS and fT the pdf’s of the exponential random variables with
rates pSλ and pTλ, respectively. We claim that the following relations hold:

10 We avoided defining the pdf’s αn and ωn on the entire closed segment [0, 2d], al-
though it can be done by continuity; if defined so, one needs to be careful to distin-
guish between αn(0) and αn,0 (respectively between ωn,2d, and ωn(2d)) which are
different in essence.

αn(x) =

∫ 2d

x

ωn−1(y) · fS(y − x)dy +

ωn−1,2d · fS(2d− x), 0 < x ≤ 2d (1)

ωn(x) =

∫ x

0

αn(z) · fT (x− z)dy +

αn,0 · fT (x), 0 ≤ x < 2d (2)

Indeed, starting with 1, Un opens x seconds after the window creation if and
only if for some y, Un−1 closed y seconds after its window creation (with prob-
ability ωn−1(y) for y < 2d and ωn−1,2d for y = 2d), and the gap between their
respective creations was y − x seconds (fS(y − x)). This calculation is relevant
only to x > 0, as only under the assumption that Un’s window creation preceded
Un−1’s closure the period between Un−1’s opening and closing (y) contains that
between Un’s window creation and opening (x).

Regarding 2, Un closes x seconds after its window creation if and only if for
some z, z seconds passed between Un’s window creation and its opening (with
probability αn(z) for z > 0 and αn,0 for z = 0), and x− z seconds between the
latter and its closing (fT (x − z)). That the gap between the opening and the
closing of Un is controlled by fT is true only in the region x < 2d.

The processes open(Un) and close(Un) are Markovian, and we now write
equations 1 and 2 applied to their limiting distributions, α(x), α0 and ω(x), ω2d:

α(x) =

∫ 2d

x

ω(y) · fS(y − x)dy +

ω2d · fS(2d− x), 0 < x ≤ 2d (3)

ω(x) =

∫ x

0

α(z) · fT (x− z)dy +

α0 · fT (x), 0 ≤ x < 2d (4)

These equations resolve to a differential equation system:(
α
ω

)′

=

(
pSλ − pSλ
pTλ − pTλ

)
·
(
α
ω

)
whose solution is:(

α(x)
ω(x)

)
=
A

S

(
pSλ(e

S·x − 1)
pTλ(e

S·x − 1)

)
+

(
α(0)
ω(0)

)
(5)

for A = α(0)− ω(0) ; S = pSλ− pTλ.

Lemma 13. Equation 5 implies

ω2d =
pSλ− pTλ

pSλ− pTλe−(pSλ−pTλ)2d
.

By the definition of ω2d, it is precisely the fraction of u’s blocks that have
no conflicting blocks created by v. The blocks which contribute to the growth of
the main chain are can thus be counted by considering all of v’s blocks as valid,
and adding to those all of u’s non-conflicting blocks. Altogether, we obtain

β(λ) = pTλ+ ω2d · pSλ =

pTλ+
pSλ− pTλ

pSλ− pTλe−(pSλ−pTλ)2d
pSλ =

(pSλ)
2epSλ2d − (pTλ)

2epTλ2d

pSλepSλ2d − pTλepTλ2d
.

This concludes the proof of Theorem 9. ⊓⊔

All that remains is to prove Lemma 13

Proof (of Lemma 13). By equation 1, α(2d) = ω2dpSλ, and by 2, ω(0) = α0pTλ.
Therefore,

ω(x) = ÂpTλ(e
(pSλ−pTλ)x − 1) + α0pTλ, for Â :=

A

pSλ− pTλ
⇒

ω′(x) = pTλAe
(pSλ−pTλ)x.

By E, ω′(x) = pTλ(α(x)− ω(x)), and therefore,

α(x)− ω(x) = Ae(pSλ−pTλ)x ⇒ α′(x) = pSλ(α(x)− ω(x))⇒

α(x) =

x∫
0

pSλ(α(t)− ω(t))dt+ α(0) = pSλ

x∫
0

Ae(pSλ−pTλ)tdt+ α(0) =

pSλ ·A
pSλ− pTλ

(e(pSλ−pTλ)x − 1) + α(0).

We obtain,

α(0) = ω(0) +A = α0pTλ+A =⇒

α(x) =
pSλ ·A

pSλ− pTλ
(e(pSλ−pTλ)x − 1) + α0pTλ+A =⇒

α(2d) =
pSλ ·A

pSλ− pTλ
(E − 1) + α0pTλ+A,

Therefore, for Â := A
pSλ−pTλ and E := e(pSλ−pTλ)2d,

Â =
α(2d)− α0pTλ

pSλE − pTλ
=
ω2dpSλ− α0pTλ

pSλE − pTλ
.

We have thus obtained explicit expressions for α(x) and ω(x) subject to the
parameters α0 and ω2d:

α(x) = Â(pSλe
(pSλ−pTλ)x − pTλ) + α0pTλ

ω(x) = Â(pTλe
(pSλ−pTλ)x − pTλ) + α0pTλ

By the definition of α we know that α’s integral over the range (0, 2d] should
be 1− α0:

1− α0 =

2d∫
0

(
Â(pSλe

(pSλ−pTλ)t − pTλ) + α0pTλ
)
dt =

Â

(
pSλ(E − 1)

pSλ− pTλ
− 2d · pTλ

)
+ 2d · α0pTλ =

Â
(
Ê − 2d · pTλ

)
+ 2d · α0pTλ,

for Ê := pSλ(E−1)
pSλ−pTλ . Therefore,

α0 = 1− ω2dpSλ− α0pTλ

pSλE − pTλ

(
Ê − 2d · pTλ

)
− 2d · α0pTλ.

Similarly, the integral of ω over [0, 2d) should be 1−ω2d, and combining this
with the relation α(x)− ω(x) = Ae(pSλ−pTλ)x we obtain:

1− α0 − (1− ω2d) =

2d∫
0

Ae(pSλ−pTλ)tdt = Â(E − 1) =⇒

ω2d − α0 = Â(E − 1) =
ω2dpSλ− α0pTλ

pSλE − pTλ
(E − 1) =⇒

ω2d

α0
− 1 =

ω2d

α0
pSλ− pTλ

pSλE − pTλ
(E − 1) =⇒(

1− pSλ(E − 1)

pSλE − pTλ

)
ω2d

α0
= 1− pTλ

pSλE − pTλ
(E − 1) =⇒

ω2d

α0
=

1− pTλ
pSλE−pTλ (E − 1)

1− pSλ(E−1)
pSλE−pTλ

= E

We conclude with,

ω2d = E · α0 = E

(
1−

ω2dpSλ− ω2d

E pTλ

pSλE − pTλ

(
Ê − 2d · pTλ

)
− 2d · ω2d

E
pTλ

)
=

E

(
1− ω2d

E

(
Ê − 2d · pTλ

)
− 2d · ω2d

E
pTλ

)
= E − ω2dÊ =⇒

ω2d =
E

1 + Ê
=

e(pSλ−pTλ)2d

1 + pSλ(e(pSλ−pT λ)2d−1)
pSλ−pTλ

=
e(pSλ−pTλ)2d

pSλe(pSλ−pTλ)2d − pTλ
· (pSλ− pTλ)

=
pSλ− pTλ

pSλ− pTλe−(pSλ−pTλ)2d
.

⊓⊔

F Proof of Theorem 10

Theorem 10:
Consider a network G with delays. Let 1/β1 be an upper-bound on the expected
waiting time for the next lengthening of the main chain, for all possible states
of the system. Let qλh < β1 be the creation rate of the attacker (according to
a Poisson process), and suppose the gap between the network’s longest chain
and that of the attacker is X0 blocks. Then the probability that the attacker
will succeed in extending its chain to be longer than the network’s is at most(

qλh

β1

)X0+1

.

The proof depends on the following two lemmas:

Lemma 14. Let ς be a nonnegative random variable with increasing hazard rate
function. Then, ∀k ∈ N

E[ςk] ≤ k!Ek[ς].

Note that the almost inverse inequality, E[ςk] ≥ Ek[ς], stems from Jensen’s
inequality.

Lemma 15. Let ς be as in Lemma 14, let f be its pdf, and denote β := E[ς]−1.
Then for any constant 0 < γ < β the function Hγ,β obtains a positive root a0
smaller than γ

β , where

Hγ,β(a) :=

∫ ∞

0

f(ς)eγ(
1
a−1)ςdς − 1

a
.

Proof (of Lemma 14). By induction on k. The base case k = 0 is trivial. For
k + 1 we have:

E[ςk+1] =

∫ ∞

0

ςk+1f(ς) =

∫ ∞

0

ςk+1λ(ς)e−Λ(ς)dς =

[ςk+1 · −e−Λ(ς)]∞0 +

∫ ∞

0

(k + 1)ςke−Λ(ς)dς = (k + 1)

∫ ∞

0

ςk

λ(ς)
λ(ς)e−Λ(ς)dς

On the other hand,

E[ς] =

∫ ∞

0

ςf(ς) =

∫ ∞

0

ςλ(ς)e−Λ(ς)dς =

[ς · − e−Λ(ς)]∞0 +

∫ ∞

0

e−Λ(ς)dς =

∫ ∞

0

e−Λ(ς)dς,

and therefore,

(k + 1)!Ek+1[ς] = (k + 1)k!Ek[ς]E[ς] =

(k + 1)k!Ek[ς]

∫ ∞

0

e−Λ(ς)dς = (k + 1)

∫ ∞

0

k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς

It is thus sufficient to prove that,

(k + 1)

∫ ∞

0

ςk

λ(ς)
λ(ς)e−Λ(ς)dς ≤ (k + 1)

∫ ∞

0

k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς,

or, equivalently, that ∫ ∞

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς ≤ 0.

Using the induction hypothesis we obtain:∫ ∞

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς =

∫ (k!Ek[ς])
1
k

0

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς +

∫ ∞

(k!Ek[ς])
1
k

ςk − k!Ek[ς]

λ(ς)
λ(ς)e−Λ(ς)dς

≤ 1

λ((k!Ek[ς])
1
k)

∫ (k!Ek[ς])
1
k

0

(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς +

1

λ((k!Ek[ς])
1
k)

∫ ∞

(k!Ek[ς])
1
k

(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς =

1

λ((k!Ek[ς])
1
k)

∫ ∞

0

(ςk − k!Ek[ς])λ(ς)e−Λ(ς)dς ≤ 0,

where we used λ’s monotonicity in the first inequality and the induction hypoth-
esis in the last one. ⊓⊔

Proof (of Lemma 15). We have Hγ,β(0) =∞. Hγ,β is continuous in a and thus,
by The Intermediate Value Theorem, it suffices to show that Hγ,β(

γ
β) ≤ 0.

Let H(γ) := Hγ,β(
γ
β). We need to show that H(γ) ≤ 0, and we do so by showing

that its Taylor series elements (around β) are all (!) nonpositive. That is, we show

thatH(k)(β) (γ−β)k

k! ≤ 0, and this would imply,H(γ) = Σ∞
k=0H

(k)(β)
(γ − β)k

k!
≤ 0.

Indeed,

H(k)(β) =
dk

dγk

{∫ ∞

0

f(t)e
γ(1

γ
β
−1)t

dt− 1
γ
β

}
γ=β

=

dk

dγk

{∫ ∞

0

f(t)e(β−γ)tdt− β

γ

}
γ=β

={∫ ∞

0

(−t)kf(t)eγ(1
a−1)tdt+

k!β

(−γ)k+1

}
γ=β

=∫ ∞

0

(−t)kf(t)dt+ k!β−k(−1)k+1.

As the Taylor elements of H(γ) are of alternating signs (recall γ < β), it
suffices to show the inequalities H(k)(β) ≤ 0 and H(k)(β) ≥ 0 for even and odd

k’s respectively. It is sufficient to show that for all k:

∫ ∞

0

tkf(t)dt ≤ k!β−k,

which was proven in Lemma 14. ⊓⊔

Proof (of Theorem 10). Let τn be the waiting time for the nth lengthening of
the main chain. Let fτn|τn−1,...,τ1 be the conditional pdf of τn given τn−1, ..., τ1.
Denote β := E[τn | τn−1, ..., τ1]

−1 for some given history (that is, for some
realization of the τi’s up to n − 1). By our assumption, β ≥ β1, and thus ∀k ∈
N, β−k ≤ β−k

1 (we will make use of this inequality later).

The random variable τn given a history is nonnegative with increasing hazard
rate. Indeed, when a node creates a new block it broadcasts it to the network, and
as more and more nodes learn about it, more computational power is contributed
to the effort of creating the next one and thereby lengthening the main chain.
If meanwhile a conflicting block was created elsewhere, still more computational
power is working on lengthening the main chain, just on a different version of it.

The attacker’s chain is built according to a Poisson process in the worst
case, whose rate we denoted by γ. Let N2 be the event-count (random variable)
of this process, namely, N2(t) := max{n |

∑n
j=1 τn ≤ t}. Define, Xn := n −

N2(
∑n

j=1 τn), and Yn :=
(

γ
β1

)Xn

.

The process X = (Xn) represents the gap between the lengths of the at-
tacker’s chain and the (worst-case) main chain, in favor of the latter, as the nth
lengthening of the latter occurred.

We claim that Y = (Yn) is a super-martingale, namely that for any history,
E[Yn+1 | Yn, ..., Y0] ≤ Yn. Indeed, while the value of Xn+1 depends naturally on
τn+1, ..., τ1, the increment Xn+1 −Xn given a history τn, ..., τ1 is controlled by
the random variable τn given this history, with the pdf fτn|τn−1,...,τ1 which we
abbreviate f . We have:

E [Yn+1|Yn, ..., Y0] = E

[(
γ

β1

)Xn+1 ∣∣∣ (γ

β1

)Xn

, ...,

(
γ

β1

)X0
]
= (6)

∞∑
k=0

∫ ∞

0

f(τn+1)
e−γτn+1(γτn+1)

k

k!

(
γ

β1

)Xn+1−k

dτn+1 = (7)

(
γ

β1

)Xn+1

·
∞∑
k=0

∫ ∞

0

f(τn+1)
e−γτn+1 (γτn+1)

k

k!

(
γ

β1

)−k

dτn+1 =

(
γ

β1

)Xn+1

·
∫ ∞

0

f(τn+1)e
−γτn+1

∞∑
k=0

(
γτn+1

γ
β1

)k

k!
dτn+1 =

(
γ

β1

)Xn+1

·
∫ ∞

0

f(τn+1)e
−γτn+1e

1
γ
β1

γτn+1

dτn+1 =

(
γ

β1

)Xn

· γ
β1
·
∫ ∞

0

f(τn+1)e
γ

(
1
γ
β1

−1

)
τn+1

dτn+1 ≤ (8)(
γ

β1

)Xn

= Yn.

Equality 6 is due to the attacker’s chain advancing during the waiting time
τn+1 according to a Poisson process with rate τn+1 · γ. In 7 we made explicit

the fact that
(

γ
β1

)Xn

is a constant in the σ-algebra corresponding to the natural

filtration (usually denoted by σ(Xn, ..., X1)). Finally, as a corollary of Lemma 14,
E[τkn | τn−1, ..., τ1] ≤ k!β−k ≤ k!β−k

1 . Combining this with the end of Lemma 15’s
proof shows that Hγ,β1

(γ
β1
) ≤ 0, hence 8.

Let x1 < X0 < x2 be some fixed constants, let the stopping time π be defined
by π := min{n | Xn ≤ x1 ∨ Xn ≥ x2}, and finally, define the event Ex1,x2

:=
{Xπ = x2} (i.e., “X reached x2 before it reached x1”). By Doob’s Optional
Stopping Theorem (See [19], p. 100-101) applied to the super martingale Y , we
have, (

γ

β1

)X0

= Y0 ≥ E[Yπ] =

Pr(Ex1,x2
) ·

(
γ

β1

)x2

+ Pr(Ec
x1,x2

) ·
(
γ

β1

)x1

=⇒(
γ

β1

)X0

−
(
γ

β1

)x1

≥ Pr(Ex1,x2
) ·

((
γ

β1

)x2

−
(
γ

β1

)x1
)

=⇒

Pr(Ex1,x2) ≥

(
γ
β1

)X0

−
(

γ
β1

)x1(
γ
β1

)x2

−
(

γ
β1

)x1
.

Taking x1 = −1 and x2 → ∞ we obtain a lower bound on the probability
that the gap between the chains will never reach minus 1: 1 − (γ

β1
)X0+1. The

success probability of an attack is thus upper bounded by (γ
β1
)X0+1. ⊓⊔

Note that an almost identical method shows that if the random variables τn
are i.i.d then there exists an a0 ≤ γ

β1
such that Y := aX0 is a martingale.

