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Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It was well evaluated
and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In this paper,
we propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1
with 5 FL layers does not have 128-bit security. Many attacks against MISTY1 have been
proposed, but there is no attack against the full MISTY1. Therefore, our attack is the first
cryptanalysis against the full MISTY1. We construct a new integral characteristic by using
the propagation characteristic of the division property, which was proposed in 2015. We first
improve the division property by optimizing a public S-box and then construct a 6-round
integral characteristic on MISTY1. Finally, we recover the secret key of the full MISTY1
with 263.58 chosen plaintexts and 2121 time complexity. Moreover, if we can use 263.994 chosen
plaintexts, the time complexity for our attack is reduced to 2107.9. Note that our cryptanalysis
is a theoretical attack. Therefore, the practical use of MISTY1 will not be affected by our
attack.
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1 Introduction

MISTY [Mat97] is a block cipher designed by Matsui in 1997 and is based on the theory of
provable security [Nyb94,NK95] against differential attack [BS90] and linear attack [Mat93].
MISTY has a recursive structure, and the component function has a unique structure, the
so-called MISTY structure [Mat96]. There are two types of MISTY, MISTY1 and MISTY2.
MISTY1 adopts the Feistel structure whose F-function is designed by the recursive MISTY
structure. MISTY2 does not adopt the Feistel structure and uses only the MISTY structure.
Both ciphers achieve provable security against differential and linear attacks. MISTY1 is
designed for practical use, and MISTY2 is designed for experimental use.

MISTY1 is a 64-bit block cipher with 128-bit security, and it has a Feistel structure
with FL layers, where the FO function is used in the F-function of the Feistel structure.
The FO function is constructed by using the 3-round MISTY structure, where the FI
function is used as the F-function of the MISTY structure. Moreover, the FI function
is constructed by using the 3-round MISTY structure, where a 9-bit S-box S9 and 7-bit
S-box S7 are used in the F-function. MISTY1 is the candidate recommended ciphers list
of CRYPTREC [CRY13], and it is standardized by ISO/IEC 18033-3 [ISO05]. Moreover,
it is a NESSIE-recommended cipher [NES04] and is described in RFC 2994 [OM00]. There
are many existing attacks against MISTY1, and we summarize these attacks in Table 1. A
higher-order differential attack is the most powerful attack against MISTY1, and this type
of cryptanalysis was recently improved in [Bar15]. However, there is no attack against the
full MISTY1, i.e., 8-round MISTY1 with 5 FL layers.

? c©IACR 2015. This article is the full version of the article to appear in the proceedings of CRYPTO 2015.
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Table 1. Summary of single secret-key attacks against MISTY1

Rounds #FL layers Attack algorithm Data Time Reference

5 0 higher order differential 11× 27 CP 217 [THK99]

5 3 Square 234 CP 248 [KW02]

5 4 higher order differential 222 CP 228 [HTK04]

5 4 impossible differential 238 CP 246.45 [DK08]

6 4 higher order differential 253.7 CP 253.7 [TSSK08]

6 4 impossible differential 251 CP 2123.4 [DK08]

7 0 impossible differential 250.2 KP 2114.1 [DK08]

7 4 higher order differential 254.1 CP 2120.7 [TSSK08]

7 4 higher order differential 250.1 CP 2100.4 [Bar15]

7 5 higher order differential 251.4 CP 2121 [Bar15]

8 5 integral by division property 263.58 CP 2121 This paper

8 5 integral by division property 263.994 CP 2107.9 This paper

Integral Attack The integral attack [KW02] was first proposed by Daemen et al. to eval-
uate the security of Square [DKR97] and was then formalized by Knudsen and Wagner.
There are two major techniques to construct an integral characteristic; one uses the prop-
agation characteristic of integral properties [KW02], and the other estimates the algebraic
degree [Knu94,Lai94]. We often call the second technique a “higher-order differential at-
tack.” A new technique to construct integral characteristics was proposed in 2015 [Tod15],
and it introduced a new property, the so-called “division property,” by generalizing the inte-
gral property [KW02]. It showed the propagation characteristic of the division property for
any secret function restricted by an algebraic degree. As a result, several improved results
were reported on the structural evaluation of the Feistel network and SPN.

Our Contribution In [Tod15], the focus is only on the secret S-box restricted by an al-
gebraic degree. However, many realistic block ciphers use more efficient structures, e.g., a
public S-box and a key addition. In this paper, we show that the division property becomes
more useful if an S-box is a public function. Then, we apply our technique to the cryptanal-
ysis on MISTY1. We first evaluate the propagation characteristic of the division property
for public S-boxes S7 and S9 and show that S7 has a vulnerable property. We next eval-
uate the propagation characteristic of the division property for the FI function and then
evaluate that for the FO function. Moreover, we evaluate that for the FL layer. Finally, we
create an algorithm to search for integral characteristics on MISTY1 by assembling these
propagation characteristics. As a result, we can construct a new 6-round integral charac-
teristic, where the left 7-bit value of the output is balanced. We recover the round key by
using the partial-sum technique [FKL+00]. As a result, the secret key of the full MISTY1
can be recovered with 263.58 chosen plaintexts and 2121 time complexity. Moreover, if we
can use 263.994 chosen plaintexts, the time complexity is reduced to 2107.9. Unfortunately,
we have to use almost all chosen plaintexts, and recovering the secret key by using fewer
chosen plaintexts is left as an open problem.

2 MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and the recom-
mended parameter is 8 rounds with 5 FL layers. Figure 1 shows the structure of MISTY1.
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Fig. 1. Specification of MISTY1

Let XL
i (resp. XR

i ) be the left half (resp. the right half) of an i-round input. Moreover,
XL
i [j] (resp. XR

i [j]) denotes the jth bit of XL
i (resp. XR

i ) from the left. MISTY1 is a 64-bit
block cipher, and the key-bit length is 128 bits. The component function FOi consists of
FIi,1, FIi,2, and FIi,3, and the four 16-bit round keys KOi,1, KOi,2, KOi,3, and KOi,4 are
used. The function FIi,j consists of S9 and S7, and a 16-bit round key KIi,j is used. Here, S9
and S7 are defined in Appendix A. The component function FLi uses two 16-bit round keys,
KLi,1 and KLi,2. These round keys are calculated from the secret key (K1,K2, . . . ,K8) as

Symbol KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2
Key Ki Ki+2 Ki+7 Ki+4 K ′i+5 K

′
i+1 K

′
i+3 K i+1

2
(odd i) K ′i+1

2
+6

(odd i)

K ′i
2
+2

(even i) K i
2
+4 (even i)

Here, K ′i is the output of FIi,j where the input is Ki and the key is Ki+1.

3 Integral Characteristic by Division Property

3.1 Notations

We make the distinction between the addition of Fn2 and addition of Z, and we use ⊕ and
+ as the addition of Fn2 and addition of Z, respectively. For any a ∈ Fn2 , the ith element is
expressed in a[i], and the Hamming weight w(a) is calculated as w(a) =

∑n
i=1 a[i]. Moreover,

a[i, . . . , j] denotes a bit string whose elements are values described into square brackets. Let
1n ∈ Fn2 be a value whose all elements are 1. Moreover, let 0n ∈ Fn2 be a value whose all
elements are 0.
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For any a ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ), the vectorial Hamming weight of a is defined as

W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Zm. Moreover, for any k ∈ Zm and k′ ∈ Zm, we define
k � k′ if ki ≥ k′i for all i. Otherwise, k � k′.

Boolean Function A Boolean function is a function from Fn2 to F2. Let deg(f) be the
algebraic degree of a Boolean function f . Algebraic Normal Form (ANF) is often used as
representations of the Boolean function. Let f be any Boolean function from Fn2 to F2, and
it can be represented as

f(x) =
⊕
u∈Fn2

afu

(
n∏
i=1

x[i]u[i]

)
,

where afu ∈ F2 is a constant value depending on f and u. If deg(f) is at most d, all afu
satisfying d < w(u) are 0. An n-bit S-box can be regarded as the collection of n Boolean
functions. If algebraic degrees of n Boolean functions are at most d, we say the algebraic
degree of the S-box is at most d.

3.2 Integral Attack

An integral attack is one of the most powerful cryptanalyses against block ciphers. Attackers
prepare N chosen plaintexts and get the corresponding ciphertexts. If the XOR of all corre-
sponding ciphertexts becomes 0, we say that the block cipher has an integral characteristic
with N chosen plaintexts. In an integral attack, attackers first create an integral character-
istic against a reduced-round block cipher. Then, they guess the round keys that are used
in the last several rounds and calculate the XOR of the ciphertexts of the reduced-round
block cipher. Finally, they evaluate whether or not the XOR becomes 0. If the XOR does
not become 0, they can discard the guessed round keys from the candidates of the correct
key.

3.3 Division Property

A division property, which was proposed in [Tod15], is used to search for integral charac-
teristics. We first prepare a set of plaintexts and evaluate the division property of the set.
Then, we propagate the division property and evaluate the division property of the set of
texts encrypted over one round. By repeating the propagation, we show the division prop-
erty of the set of texts encrypted over some rounds. Finally, we can easily determine the
existence of the integral characteristic from the propagated division property.

Bit Product Function We first define two bit product functions πu and πu, which are
used to evaluate the division property of a multiset. Let πu : Fn2 → F2 be a function for any
u ∈ Fn2 . Let x ∈ Fn2 be the input, and πu(x) is the AND of x[i] satisfying u[i] = 1, i.e., it is
defined as

πu(x) :=

n∏
i=1

x[i]u[i].
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Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2 be a function for any u ∈ (Fn1

2 × F
n2
2 × · · · × F

nm
2 ).

Let x ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) be the input, and πu(x) is defined as

πu(x) :=
m∏
i=1

πui(xi).

Definition of Division Property The division property is given against a multiset, and
it is calculated by using the bit product function. Let X be an input multiset whose elements
take a value of (Fn1

2 ×F
n2
2 × · · ·×F

nm
2 ). In the division property, we first evaluate a value of⊕

x∈X πu(x) for all u ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ). Then, we divide the set of u into a subset

whose evaluated value becomes 0 and a subset whose evaluated value becomes unknown1.
In [Tod15], the focus was on using the Hamming weight of elements of u to divide the set.

Definition 1 (Division Property). Let X be a multiset whose elements take a value of
(Fn1

2 × F
n2
2 × · · · × F

nm
2 ), and k is an m-dimensional vector whose ith element takes a value

between 0 and ni. When the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q), it fulfils

the following conditions: The parity of πu(x) over all x ∈ X is always even when

u ∈
{

(u1, . . . , um) ∈ (Fn1
2 × · · · × F

nm
2 ) |W (u) � k(1), . . . ,W (u) � k(q)

}
.

Moreover, the parity becomes unknown when u is used such that there exists an i (1 ≤ i ≤ q)
satisfying W (u) � k(i).

Assume that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) . If there exist k(i)

such that k
(i)
j is greater than 1,

⊕
x∈X xj becomes 0. See [Tod15] to better understand the

concept in detail.

Example 1. Let X be a multiset whose elements take a value of (F82×F82). Assume that the
multiset X has the division property D8,8

[1,5],[3,3],[4,5],[5,1],[6,0]. In this case, if (u1, u2) is chosen

from the gray part in Fig 2,
⊕

(x1,x2)∈X π(u1,u2)(x1, x2) becomes unknown. For example,
when (u1, u2) = (6, 6) is used, we cannot determine

⊕
(x1,x2)∈X π(u1,u2)(x1, x2). On the other

hand, if (u1, u2) is chosen from the white part in Fig 2,
⊕

(x1,x2)∈X π(u1,u2)(x1, x2) is 0. Notice

that the division property D8,8
[1,5],[3,3],[5,1],[6,0] is the same as D8,8

[1,5],[3,3],[4,5],[5,1],[6,0] because the
unknown space is invariant.

Similar example is shown in [SHZ+15], and it helps us understand the division property.

Propagation Rules of Division Property Some propagation rules for the division
property are proven in [Tod15]. We summarize them as follows, and the proof is shown in
Appendix B.

Rule 1 (Substitution) Let F be a function that consists of m S-boxes, where the bit
length and the algebraic degree of the ith S-box is ni bits and di, respectively. The
input and the output take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ), and X and Y denote

1 If we know all accurate values in a multiset, we can divide the set of u into subsets whose evaluated
value becomes 0 or 1. However, in the application to cryptanalysis, we evaluate the values in the multiset
whose elements are texts encrypted for several rounds. Such elements change depending on the sub keys
and the constant bit of plaintexts. Therefore, we consider the subset whose evaluated value becomes 0 or
unknown.
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w(u1)

w(u2)

(1,5)

(3,3)

(5,1)

(4,5)

(6,0)

Fig. 2. Division Property D8,8
[1,5],[3,3],[5,1],[6,0].

the input multiset and the output multiset, respectively. Assuming that the multiset
X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) , the division property of the multiset Y is

Dn1,n2,...,nm

k′(1),k′(2),...,k′(q)
as

k
′(j)
i =

⌈
k
(j)
i

di

⌉
for 1 ≤ i ≤ m, 1 ≤ j ≤ q.

Rule 2 (Copy) Let F be a copy function, where the input x takes a value of Fn2 and the
output is calculated as (y1, y2) = (x, x). Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division property Dnk , the
division property of the multiset Y is Dn,n

k′(1),k′(2),...,k′(k+1) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Rule 3 (Compression by XOR) Let F be a function compressed by an XOR, where
the input (x1, x2) takes a value of (Fn2 ×Fn2 ) and the output is calculated as y = x1⊕x2.
Let X and Y be the input multiset and output multiset, respectively. Assuming that
the multiset X has the division property Dn,n

k(1),k(2),...,k(q) , the division property of the

multiset Y is Dnk′ as

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

Here, if the minimum value of k′ is larger than n, the propagation characteristic of the
division property is aborted. Namely, a value of ⊕y∈Yπv(y) is 0 for all v ∈ Fn2 .

Rule 4 (Split) Let F be a split function, where the input x takes a value of Fn2 and the
output is calculated as x = y1‖y2, where (y1, y2) takes a value of (Fn1

2 ×F
n−n1
2 ). Let X and

Y be the input multiset and output multiset, respectively. Assuming that the multiset X
has the division property Dnk , the division property of the multiset Y is Dn1,n−n1

k′(1),k′(2),...,k′(q)

as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Here, (k − i) is less than or equal to n1, and i is less than or equal to n− n1.
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SSx
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y x y

Fig. 3. The difference between [Tod15] and us. The left figure is an assumption used in [Tod15]. The right
one is a new assumption used in this paper.

Rule 5 (Concatenation) Let F be a concatenation function, where the input (x1, x2)
takes a value of (Fn1

2 × F
n2
2 ) and the output is calculated as y = x1‖x2. Let X and Y be

the input multiset and output multiset, respectively. Assuming that the multiset X has
the division property Dn1,n2

k(1),k(2),...,k(q) , the division property of the multiset Y is Dn1+n2
k′

as

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

4 Division Property for Public Function

In an assumption of [Tod15], attackers cannot know the specification of an S-box and only
know the algebraic degree of the S-box. However, many specific block ciphers usually use a
public S-box and an addition of secret sub keys, where an XOR is especially used for the
addition. In this paper, we show that the propagation characteristic of the division property
can be improved if an S-box is a public function. The difference between [Tod15] and us is
shown in Fig. 3.

We consider the propagation characteristic of the division property against the function
shown in the right figure in Fig. 3. The key XORing first be applied, but it does not af-
fect the division property because it is a linear function. Therefore, when we evaluate the
propagation characteristic of the division property, we can remove the key XORing. Next,
a public S-box is applied, and we can determine the ANF of the S-box. Assuming that an
S-box is a function from n bits to m bits, the ANF is represented as

y[1] = f1(x[1], x[2], . . . , x[n]),

y[2] = f2(x[1], x[2], . . . , x[n]),

...

y[m] = fm(x[1], x[2], . . . , x[n]),

where x[i] (1 ≤ i ≤ n) is an input, y[j] (1 ≤ j ≤ m) is an output, and fj (1 ≤ j ≤ m)
is a Boolean function. The division property evaluates the input multiset and output one
by using the bit product function πu, and we then divide the set of u into a subset whose
evaluated value becomes 0 and a subset whose evaluated value becomes unknown. Namely,
we evaluate the equation

Fu(x[1], x[2], . . . , x[n]) =
m∏
i=1

fi(x[1], x[2], . . . , x[n])u[i]

and divide the set of u. In [Tod15], a fundamental property of the product of some functions
is used, i.e., the algebraic degree of Fu is at most w(u)×d if the algebraic degree of functions
fi is at most d. However, since we now know the ANF of functions f1, f2, . . . , fm, we can
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calculate the accurate algebraic degree of Fu for all u ∈ Fn2 . In this case, if the algebraic
degree of Fu is less than w(u)× d for all u for which w(u) is constant, we can improve the
propagation characteristic.

4.1 Application to MISTY S-boxes

Evaluation of S7 The S7 of MISTY is a 7-bit S-box with degree 3. We show the ANF of S7
in Appendix A. We evaluate the property of (πv ◦ S7) to get the propagation characteristic
of the division property. The algebraic degree of (πv ◦ S7) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7

degree 0 3 5 5 6 6 6 7

If we replace the S7 with a modified S-box, which is randomly chosen from all 7-bit S-boxes
with degree 3, the algebraic degree of (πv ◦ S) is at least 6 with w(v) ≥ 2. However, for
the S7, the increment of the algebraic degree is bounded by 5 with w(v) = 2 or w(v) = 3
holds2. Thus, the propagation characteristic is represented as the following.

D7
k for input set X D7

0 D7
1 D7

2 D7
3 D7

4 D7
5 D7

6 D7
7

D7
k for output set Y D7

0 D7
1 D7

1 D7
1 D7

2 D7
2 D7

4 D7
7

Notice that the division property D7
4 is propagated from the division property D7

6. Assuming
that the modified S-box is applied, the division property D7

2 is propagated from the division
property D7

6 [Tod15]. Therefore, the deterioration of the division property for the S7 is
smaller than that for any 7-bit S-box.

Evaluation of S9 The S9 of MISTY is a 9-bit S-box with degree 2. We show the ANF of S7
in Appendix A. We evaluate the property of (πv ◦ S9) to get the propagation characteristic
of the division property. The algebraic degree of (πv ◦ S9) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7 8 9

degree 0 2 4 6 8 8 8 8 8 9

Thus, the propagation characteristic is represented as

D9
k for input set X D9

0 D9
1 D9

2 D9
3 D9

4 D9
5 D9

6 D9
7 D9

8 D9
9

D9
k for output set Y D9

0 D9
1 D9

1 D9
2 D9

2 D9
3 D9

3 D9
4 D9

4 D9
9

Unlike the propagation characteristic of the division property for S7, that for S9 is the same
as that for any 9-bit S-box with degree 2.

5 New Integral Characteristic

This section shows how to create integral characteristics on MISTY1 by using the propaga-
tion characteristic of the division property. We first evaluate the propagation characteristic
for the component functions of MISTY1, i.e., the FI function, the FO function, and the
FL layer. Finally, by assembling these characteristics, we create an algorithm to search for
integral characteristics on MISTY1.
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Fig. 4. Structure of FI function

5.1 Division Property for FI function

We evaluate the propagation characteristic of the division property for the FI function by
using those for MISTY S-boxes shown in Sect. 4.1. Since there are a zero-extended XOR
and a truncated XOR in the FI function, we use a new representation, in which the internal
state is expressed in two 7-bit values and one 2-bit value. Figure 4 shows the structure of
the FI function with our representation, where we remove the XOR of sub keys because it
does not affect the division property.

Let X1 be the input multiset of the FI function. We define every multiset X2,X3, . . . ,X11

in Fig. 4. Here, elements of the multiset X1, X5, X6, and X11 take a value of (F72×F22×F72).
Elements of the multiset X2, X3, X8, and X9 take a value of (F92 × F72). Elements of the
multiset X4, X7, and X10 take a value of (F22×F72×F72). Since elements of X1 and X11 take a
value of (F72×F22×F72), the propagation for the FI function is calculated on D7,2,7

k(1),k(2),...,k(q) .

Here, the propagation is calculated with the following steps.

From X1 to X2: A 9-bit value is created by concatenating the first 7-bit value with the
second 2-bit value. The propagation characteristic can be evaluated by using Rule 5.

From X2 to X3: The 9-bit S-box S9 is applied to the first 9-bit value. The propagation
characteristic can be evaluated by using Rule 1.

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit value. The
propagation characteristic can be evaluated by using Rule 4.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule 2 and
Rule 3.

From X5 to X6: The 7-bit S-box S7 is applied to the first 7-bit value. The propagation
characteristic can be evaluated by using Rule 1.

From X6 to X7: The first 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule 2 and
Rule 3.

From X7 to X8: A 9-bit value is created by concatenating the first 2-bit value with the
second 7-bit value. The propagation characteristic can be evaluated by using Rule 5.

From X8 to X11: The propagation characteristic is the same as that from X2 to X5.

As an example, we show the propagation characteristic when X1 has the division property
D7,2,7

[4,2,6] in Appendix E. Algorithm 1 creates the propagation characteristic table for the FI
function. It calls SizeReduce, where redundant elements are eliminated, i.e., it eliminates
k(i) if there exists j satisfying k(i) � k(j). Algorithm 1 only creates the propagation char-
acteristic table for which the input property is represented by D7,2,7

k . If any input multiset

2 This observation was also provided by Theorem 3.1 in [BC13].
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Algorithm 1 Propagation for FI function
1: procedure FIEval(k1, k2, k3)
2: k(1),k(2), . . . ,k(q) ⇐ S9Eval(k) . X1 → X5

3: k(1),k(2), . . . ,k(q) ⇐ S7Eval(k(1),k(2), . . . ,k(q)) . X5 → X7

4: k(1),k(2), . . . ,k(q) ⇐ S9Eval(k(1),k(2), . . . ,k(q)) . X7 → X11

5: return SizeReduce(k(1),k(2), . . . ,k(q))
6: end procedure

1: procedure S9Eval(k(1), . . . ,k(q))
2: q′ ⇐ 0
3: for i⇐ 1 to q do
4: (`, c, r)⇐ (k

(i)
1 , k

(i)
2 , k

(i)
3 )

5: k ⇐ ` + c
6: if k < 9 then
7: k ⇐ dk/2e
8: end if
9: for c′ ⇐ 0 to min(2, k) do

10: for x⇐ 0 to r do
11: `′ ⇐ r − x
12: r′ ⇐ k − c′ + x
13: if r′ ≤ 7 then
14: q′ ⇐ q′ + 1
15: k′(q

′) ⇐ (`′, c′, r′)
16: end if
17: end for
18: end for
19: end for
20: return k′(1),k′(2), . . . ,k′(q

′)

21: end procedure

22: procedure S7Eval(k(1), . . . ,k(q))
23: q′ ⇐ 0
24: for i⇐ 1 to q do
25: (`, c, r)⇐ (k

(i)
1 ,k

(i)
2 ,k

(i)
3 )

26: k ⇐ `
27: if k = 6 then
28: k ⇐ 4
29: else if k < 6 then
30: k ⇐ dk/3e
31: end if
32: for x⇐ 0 to r do
33: `′ ⇐ c
34: c′ ⇐ r − x
35: r′ ⇐ k + x
36: if r′ ≤ 7 then
37: q′ ⇐ q′ + 1
38: k′(q

′) ⇐ (`′, c′, r′)
39: end if
40: end for
41: end for
42: return k′(1),k′(2), . . . ,k′(q

′)

43: end procedure

FI FIFI

Fig. 5. Structure of FO function

is evaluated, we need to know the propagation characteristic of D7,2,7

k(1),k(2),...,k(q) . However,

we do not evaluate such propagation in advance because it can easily be evaluated by the
table for which the input property is represented by D7,2,7

k . We show all propagation char-
acteristic tables in Appendix G. Moreover, we experimentally search for the propagation
characteristic (see Appendix F).

5.2 Division Property for FO function

We next evaluate the propagation characteristic of the division property for the FO function
by using the propagation characteristic table of the FI function. Figure 5 shows the structure
of the FO function, where we remove the XOR of sub keys because it does not affect the
division property. The input and output of the FO function take the value of (F72×F22×F72×
F72×F22×F72). Therefore, the propagation for the FO function is calculated on D7,2,7,7,2,7

k(1),k(2),...,k(q) .
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Algorithm 2 Propagation for FO function
1: procedure FOEval(k1, k2, k3, k4, k5, k6)
2: k(1),k(2), . . . ,k(q) ⇐ FORound(k)
3: k(1),k(2), . . . ,k(q) ⇐ FORound(k(1),k(2), . . . ,k(q))
4: k(1),k(2), . . . ,k(q) ⇐ FORound(k(1),k(2), . . . ,k(q))
5: return SizeReduce(k(1),k(2), . . . ,k(q))
6: end procedure

1: procedure FORound(k(1),k(2), . . . ,k(q))
2: q′ ⇐ 0
3: for i = 1 to q do
4: y(1),y(2), . . . ,y(qy) ⇐ FIEval(k

(i)
1 , k

(i)
2 , k

(i)
3 )

5: for j = 1 to qy do

6: for all x s.t. (x1 ≤ k
(i)
4 ) ∧ (x2 ≤ k

(i)
5 ) ∧ (x3 ≤ k

(i)
6 ) do

7: k′ ⇐ (k
(i)
4 − x1, k

(i)
5 − x2, k

(i)
6 − x3, y

(j)
1 + x1, y

(j)
2 + x2, y

(j)
3 + x3)

8: if (k′4 ≤ 7) ∧ (k′5 ≤ 2) ∧ (k′6 ≤ 7) then
9: q′ ⇐ q′ + 1

10: k′(q′) ⇐ k′

11: end if
12: end for
13: end for
14: end for
15: return k′(1),k′(2), . . . ,k′(q

′)

16: end procedure

Similar to that for the FI function, we create the propagation characteristic table for
the FO function (see Algorithm 2). We create only a table for which the input property is
represented by D7,2,7,7,2,7

k and the output property is represented by D7,2,7,7,2,7

k(1),k(2),...,k(q) . As an

example, the propagation characteristic table from D7,2,7,7,2,7
[1,1,2,3,1,5] is shown in Appendix H.

5.3 Division Property for FL Layer

MISTY1 has the FL layer, which consists of two FL functions and is applied once every two
rounds. In the FL function, the right half of the input is XORed with the AND between
the left half and a sub key KLi,1. Then, the left half of the input is XORed with the OR
between the right half and a sub key KLi,2.

Since the input and the output of the FL function take the value of F72 × F22 × F72 ×
F72 × F22 × F72, the propagation for the FL function is calculated on D7,2,7,7,2,7

k(1),k(2),...,k(q) . FlEval

in Algorithm 3 calculates the propagation characteristic table for the FL function, where
SizeReduce eliminates k(i) if there exists j satisfying k(i) � k(j). Moreover, the FL layer
consists of two FL functions. Therefore, we have to consider the propagation characteristic
of the division property D7,2,7,7,2,7,7,2,7,7,2,7

k , where each FL function is applied to the left half
and the right one. FlLayerEval in Algorithm 3 calculates the propagation characteristic of
the division property for the FL layer.

5.4 Path Search for Integral Characteristic on MISTY1

We created the propagation characteristic table for the FI and FO functions in Sect. 5.1
and 5.2, respectively. Moreover, we showed the propagation characteristic for the FL layer in
Sect. 5.3. By assembling these propagation characteristics, we create an algorithm to search
for integral characteristics on MISTY1. Since the input and the output are represented as
eight 7-bit values and four 2-bit values, the propagation is calculated on D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(q) .
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Algorithm 3 Propagation for FL layer
1: procedure FlEval(k1, k2, . . . , k6)
2: q′ ⇐ 0
3: (`, c, r)⇐ (k1 + k4, k2 + k5, k3 + k6)
4: for k′1 ⇐ 0 to min(7, `) do
5: for k′2 ⇐ 0 to min(2, c) do
6: for k′3 ⇐ 0 to min(7, r) do
7: (k′4, k

′
5, k
′
6)⇐ (`− k′1, c− k′2, r − k′3)

8: if (k′4 ≤ 7) ∧ (k′5 ≤ 2) ∧ (k′6 ≤ 7) then
9: q′ ⇐ q′ + 1

10: k′(q
′) ⇐ (k′1, k

′
2, k
′
3, k
′
4, k
′
5, k
′
6)

11: end if
12: end for
13: end for
14: end for
15: return SizeReduce(k(1),k(2), . . . ,k(q′))
16: end procedure

1: procedure FlLayerEval(k(1),k(2), . . . ,k(q))
2: q′ ⇐ 0
3: for i⇐ 1 to q do
4: `(1), `(2), . . . , `(q`) ⇐ FlEval(k

(i)
1 , k

(i)
2 , . . . , k

(i)
6 )

5: r(1), r(2), . . . , r(qr) ⇐ FlEval(k
(i)
7 , k

(i)
8 , . . . , k

(i)
12 )

6: for j ⇐ 1 to q` do
7: for j′ ⇐ 1 to qr do
8: q′ ⇐ q′ + 1

9: k′(q
′) ⇐ (`

(j)
1 , `

(j)
2 , `

(j)
3 , `

(j)
4 , `

(j)
5 , `

(j)
6 , r

(j′)
1 , r

(j′)
2 , r

(j′)
3 , r

(j′)
4 , r

(j′)
5 , r

(j′)
6 )

10: end for
11: end for
12: end for
13: return (k′(1),k′(2), . . . ,k′(q

′))
14: end procedure

The FL layer is first applied to plaintexts, and it deteriorates the propagation of the
division property. Therefore, we first remove only the first FL layer and search for integral
characteristics on MISTY1 without the first FL layer. The method for passing through the
first FL layer is shown in the next paragraph. Algorithm 4 shows the search algorithm for in-
tegral characteristics on MISTY1 without the first FL layer. The straightforward implemen-
tation requires impractical calculation time because the perfect processing of SizeReduce
requires O(q′2) time complexity. Notice that the result of Algorithm 4 does not change even
if we do not perform SizeReduce. Therefore, we roughly but fast perform SizeReduce.
Since the excessive rough SizeReduce causes redundant processing in the next round, we
have to search for efficient degree of roughness.

As a result, we can construct 6-round integral characteristics without the first and last
FL layers. Each characteristic uses 263 chosen plaintexts, where any one bit of the first
seven bits is constant and the others take all values. Appendix C shows the propagation
characteristic of the division property. Figure 6 shows the 6-round integral characteristic,
where the bit strings labeled B, i.e., the first 7 bits and last 32 bits, are balanced. Notice
that the 6-round characteristic becomes a 7-round characteristic if the FL layer that is
inserted after the 6th round is removed. Compared with the previous 4-round characteris-
tic [HTK04,TSSK08], our characteristic is improved by two rounds.
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Algorithm 4 Path search for r-round characteristics without first FL layer

1: procedure RoundFuncEval(k(1),k(2), . . . ,k(q))
2: q′ = 0
3: for i⇐ 1 to q do
4: for all x s.t. xj ≤ k

(i)
j for all j = 1, 2, . . . , 6 do

5: (r1, r2, r3)⇐ (k
(i)
1 − x1, k

(i)
2 − x2, k

(i)
3 − x3)

6: (r4, r5, r6)⇐ (k
(i)
4 − x4, k

(i)
5 − x5, k

(i)
6 − x6)

7: y(1),y(2), . . . ,y(qy) ⇐ FOEval(x1, x2, x3, x4, x5, x6)
8: for i′ ⇐ 1 to qy do

9: (`1, `2, `3)⇐ (k
(i)
7 + y

(i′)
1 , k

(i)
8 + y

(i′)
2 , k

(i)
9 + y

(i′)
3 )

10: (`4, `5, `6)⇐ (k
(i)
10 + y

(i′)
4 , k

(i)
11 + y

(i′)
5 , k

(i)
12 + y

(i′)
6 )

11: if `j′ ≤ 7 for j′ ∈ {1, 3, 4, 6} and `j′ ≤ 2 for j′ ∈ {2, 5} then
12: q′ ⇐ q′ + 1
13: k′(q

′) ⇐ (`1, `2, `3, `4, `5, `6, r1, r2, r3, r4, r5, r6)
14: end if
15: end for
16: end for
17: end for
18: return SizeReduce(k′(1),k′(2), . . . ,k′(q

′))
19: end procedure

1: procedure Misty1Eval(k1, k2, . . . , k12, r)
2: k(1),k(2), . . . ,k(q) ⇐ RoundFuncEval(k) . 1st round
3: for i = 1 to r do
4: if i is even then
5: k(1),k(2), . . . ,k(q) ⇐ FlLayerEval(k(1),k(2), . . . ,k(q)) . FL Layer
6: end if
7: k(1),k(2), . . . ,k(q) ⇐ RoundFuncEval(k(1),k(2), . . . ,k(q)) . (i+1)th round
8: end for
9: end procedure

As shown in Sect. 4, the S7 of MISTY1 has the vulnerable property that D7
4 is provided

from D7
6. Interestingly, assuming that S7 does not have this property (change lines 27–31

in S7Eval), our algorithm cannot construct the 6-round characteristic.

We already know that MISTY1 has the 14th order differential characteristic, which is
shown in [THK99], and the principle was also discussed in [BF00,CV02]. We also evaluate
the principle of the characteristic by using the propagation characteristic of the division
property. As a result, we confirm that the characteristic always exists if each algebraic
degree S9 and S7 is 2 and 3, respectively. This result implies that the existence of the 14th
order differential characteristic is only derived from the algebraic degree of S-boxes. Namely,
even if different S-boxes are chosen in S7 and S9, the 14th order differential characteristic
exists unless the algebraic degree increases. The detail is discussed in Appendix D.

Passage of First FL Layer Our new characteristic removes the first FL layer. Therefore,
we have to create a set of chosen plaintexts to construct integral characteristics by using
guessed round keys KL1,1 and KL1,2. Here, we have to carefully choose the set of chosen
plaintexts to avoid the use of the full code book (see Fig. 7, Fig. 8, and Fig. 9). In every
figure, Ai denotes for which we prepare an input set that i bits are active. As an example, we
consider an integral characteristic for which the first one bit is constant and the remaining
63 bits are active. Since all bits of the right half are active, we focus only on the left
half. We first guess that KL1,2[1] = 1, and we then prepare the set of plaintexts like in
Fig. 7. We next guess that (KL1,1[1],KL1,2[1]) = (0, 0), and we then prepare the set of
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Fig. 6. New 6-round integral characteristic

KL1,1

KL1,2

(0A15  0A15)
(0A15  1A15)

(1A15  A16)

KL1,2[1]=1

KL1,1[1]=*

Fig. 7. KL1,2 = 1

KL1,1

KL1,2

(0A15  1A15)
(1A15  0A15)

(1A15  A16)

KL1,2[1]=0

KL1,1[1]=0

Fig. 8. KL1,1 = 0,KL1,2 = 0

KL1,1

KL1,2

(0A15  0A15)
(1A15  0A15)

(0A15  A16)

KL1,2[1]=0

KL1,1[1]=1

Fig. 9. KL1,1 = 1,KL1,2 = 0

plaintexts like in Fig. 8. Moreover, we guess that (KL1,1[1],KL1,2[1]) = (1, 0), and we then
prepare the set of plaintexts like in Fig. 9. Their chosen plaintexts construct 6-round integral
characteristics if the guessed key bits are correct. Notice that we do not use 262 chosen
plaintexts as (1A15 1A15 A16 A16). Thus, our integral characteristics use 264 − 262 ≈ 263.58

chosen plaintexts.

6 Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the 6-round
integral characteristic shown in Sect. 5. In the characteristic, the left 7-bit value of XL

7 is
balanced. To evaluate this balanced seven bits, we have to calculate two FL layers and one
FO function by using the guessed round keys. Figure 10 shows the structure of our key
recovery step.

6.1 Sub Key Recovery Using Partial-Sum Technique

We guessKL1,1[i](= K1[i]) andKL1,2[i](= K ′7[i]) and then prepare a set of chosen plaintexts
to construct an integral characteristic. In the characteristic, seven bits XL

7 [1, . . . , 7] are
balanced. Therefore, we evaluate whether or not XL

7 [j] is balanced for j ∈ {1, 2, . . . , 7} by
using a partial-sum technique [FKL+00].

In the first step, we store the frequency of 34 bits (CL, CR[j, 16 + j]) into a voting table
for j ∈ {1, 2, . . . , 7}. Then, we partially guess round keys, discard the size of the voting table,
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S9 S9S7 S9 S9S7 S9 S9S7

BUU UUU

C  [1-16]L C  [17-32]L C  [j]R C  [16+j]R

S9 S9S7 S9 S9S7 S9 S9S7

Fig. 10. Key recovery step

Table 2. Procedure of key recovery step

Step Guessed key #guessed New Discarded values #texts Values in set Complexity
total bits value

1 0 234 CL, CR[j, 16 + j]
2 K1,K

′
7 32 XR

9 CL 234 XR
9 , CR[j, 16 + j] 234+32 = 266

3 K8,K
′
5 64 D1 XR

9 [1, . . . , 16] 234 D1, X
R
9 [17, . . . , 32], CR[j, 16 + j] 234+64 = 298

4 K′3[j], (K7) 65 D2[j] D1 w/oD1[j] 220 D1[j], D2[j], XR
9 [17, . . . , 32], CR[j, 16 + j] 234+65 = 299

5 K2, (K
′
1[j]) 81 D3[j] XR

9 [17, . . . , 32], D1[j] 24 D2[j], D3[j], CR[j, 16 + j] 220+81 = 2101

6 K5[j],K′2[j] 83 XL
7 [j] D2[j], D3[j], CR[j, 16 + j] 21 XL

7 [j] 24+83 = 287

and calculate the XOR of XL
7 [j]. Table 2 summarizes the procedure of the key recovery step,

where every value is defined in Fig. 10.

Step 1 Prepare the memory that stores how many times each 34-bit value (CL, CR[j, 16+j])
appears, and pick the values that appear odd times.

Step 2 Guess 32-bit (K1,K
′
7), and calculate XR

9 from CL. Delete CL from the memory,
and store XR

9 into the memory. Namely, there are 34-bit value (XR
9 , C

R[j, 16+ j]) in the
memory. The time complexity of Step 2 is 234 × 232 = 266.

Step 3 Guess 32-bit (K8,K
′
5), and calculate D1 from XR

9 . Delete XR
9 [1, . . . , 16] from the

memory, and storeD1 into the memory. Namely, there are 34-bit value (D1, X
R
9 [17, . . . , 32], CR[j, 16+

j]) in the memory. The time complexity of Step 3 is 234 × 264 = 298.

Step 4 Guess 1-bit K ′3[j], get K7 from (K ′7,K8), which is already guessed in Step 2 and
Step 3, and calculate D2[j] from D1. Delete D1 without D1[j] from the memory, and store
D2[j] into the memory. Namely, there are 20-bit value (D1[j], D2[j], X

R
9 [17, . . . , 32], CR[j, 16+

j]) in the memory. The time complexity of Step 4 is 234 × 265 = 299.

Step 5 Guess 32-bit K2, get K ′1[j] from (K1,K2), which is already guessed in Step 2 and
Step 5, and calculate D3[j] from (XR

9 [17, . . . , 32], D1[j]). Delete (XR
9 [17, . . . , 32], D1[j])

from the memory, and store D3[j] into the memory. Namely, there are 4-bit value



16 Yosuke Todo

(D2[j], D3[j], C
R[j, 16 + j]) in the memory. The time complexity of Step 5 is 220× 281 =

2101.
Step 6 Guess 2-bit (K5[j],K

′
2[j]), get K ′3[j], which is already guessed in Step 4, and calcu-

late XL
7 [j] from (D2[j], D3[j], C

R[j, 16 + j]). The time complexity of Step 6 is 24× 283 =
287.

The total time complexity is

266 + 298 + 299 + 2101 + 287 ≈ 2101.5.

We repeat the above six steps for j ∈ {1, 2, . . . , 7}. Therefore, the time complexity of the
key recovery step is 7× 2101.5 = 2104.3.

The key recovery step has to guess the 124-bit key

K1,K2,K5[1, . . . , 7],K7,K8,

K ′1[1, . . . , 7],K ′2[1, . . . , 7],K ′3[1, . . . , 7],K ′5,K
′
7.

Here, K ′7 and K ′1[1, . . . , 7] are uniquely determined by guessing K7,K8 and K1,K2, respec-
tively. Thus, the guessed key bit size is reduced to

K1,K2,K5[1, . . . , 7],K7,K8,

K ′2[1, . . . , 7],K ′3[1, . . . , 7],K ′5,

and it becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K1[i] and K ′7[i], to
construct integral characteristics, the guessed key bit size is reduced to 99 bits. For wrong
keys, the probability that XL

7 [1, . . . , 7] is balanced is 2−7. Therefore, the number of the
candidates of round keys is reduced to 292. Finally, we guess the 27 bits:

K5[8, . . . , 16],K ′2[8, . . . , 16],K ′3[8, . . . , 16].

Notice that K3, K4, and K6 are uniquely determined from (K2,K
′
2), (K3,K

′
3), and (K5,K

′
5),

respectively. Therefore, the total time complexity is 292+27 = 2119. We guess the correct key
from 2119 candidates by using two plaintext-ciphertext pairs, and the time complexity is
2119 + 2119−64 ≈ 2119. We have to execute the above procedure against (K1[i],K

′
7[i]) =

(0, 0), (0, 1), (1, 0), (1, 1), and the time complexity becomes 4× 2119 = 2121.

6.2 Trade-off between Time and Data Complexity

In Sect. 6.1, we use only one set of chosen plaintexts, where (264−262) chosen plaintexts are
required. Since the probability that wrong keys are not discarded is 2−7, a brute-force search
is required with a time complexity of 2128−7 = 2119, and it is larger than the time complexity
of the partial-sum technique. Therefore, if we have a higher number of characteristics, the
total time complexity can be reduced.

To prepare several characteristics, we choose some constant bits from seven bits (i ∈
{1, 2, . . . , 7}). If we use a characteristic with i = 1, we use chosen plaintexts for which
plaintext PL takes the following values

(00A14 00A14), (00A14 01A14), (01A14 00A14), (01A14 01A14),

(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),

(10A14 00A14), (10A14 01A14), (11A14 00A14), (11A14 01A14),
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Table 3. Trade-off between time and data complexity

#characteristics Complexity for partial-sum Complexity for brute-force Total

1 1× 3× 2104.3 2121 2121

2 2× 3× 2104.3 2114 2114

3 3× 3× 2104.3 2107 2108.3

4 4× 3× 2104.3 2100 2107.9

5 5× 3× 2104.3 293 2108.2

where A14 denotes that all values appear the same number independent of other bits, e.g.,
(00A14 00A14) uses 260 chosen plaintexts because PR also takes all values. Moreover, if we
use a characteristic with i = 2, we use chosen plaintexts for which PL takes the following
values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),

(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),

(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for which PL

takes (11A14 11A14). Therefore, (264 − 260) chosen plaintexts are required, and the proba-
bility that wrong keys are not discarded becomes 2−14. Similarly, when three characteristics,
which require (264 − 258) chosen plaintexts, are used, the probability that wrong keys are
not discarded becomes 2−21.

Table 3 summarizes the trade-off between time and data complexity. For the use of each
characteristic, we have to execute three key recoveries with the partial-sum technique, i.e.,
for (KL1,1[1],KL1,2[1]) ∈ {(∗, 1), (0, 0), (1, 0)}. It shows that the use of four characteristics
is optimized from the perspective of time complexity. Namely, when (264 − 256) ≈ 263.994

chosen plaintexts are required, the time complexity to recovery the secret key is 2107.9.

7 Conclusions

In this paper, we showed a cryptanalysis of the full MISTY1. MISTY1 was well evaluated
and standardized by several projects, such as CRYPTREC, ISO/IEC, and NESSIE. We
constructed a new integral characteristic by using the propagation characteristic of the
division property. Here, we improved the division property by optimizing a public S-box.
As a result, a new 6-round integral characteristic is constructed, and we can recover the
secret key of the full MISTY1 with 263.58 chosen plaintexts and 2121 time complexity. If
we can use 263.994 chosen plaintexts, our attack can recover the secret key with a time
complexity of 2107.9.
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A MISTY S-boxes

The ANF of S7 is represented as

y[0] = x[0]⊕ x[1]x[3]⊕ x[0]x[3]x[4]⊕ x[1]x[5]⊕ x[0]x[2]x[5]⊕ x[4]x[5]
⊕ x[0]x[1]x[6]⊕ x[2]x[6]⊕ x[0]x[5]x[6]⊕ x[3]x[5]x[6]⊕ 1,

y[1] = x[0]x[2]⊕ x[0]x[4]⊕ x[3]x[4]⊕ x[1]x[5]⊕ x[2]x[4]x[5]⊕ x[6]⊕ x[0]x[6]
⊕ x[3]x[6]⊕ x[2]x[3]x[6]⊕ x[1]x[4]x[6]⊕ x[0]x[5]x[6]⊕ 1,

y[2] = x[1]x[2]⊕ x[0]x[2]x[3]⊕ x[4]⊕ x[1]x[4]⊕ x[0]x[1]x[4]⊕ x[0]x[5]⊕ x[0]x[4]x[5]
⊕ x[3]x[4]x[5]⊕ x[1]x[6]⊕ x[3]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[4]x[6],

y[3] = x[0]⊕ x[1]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[2]x[4]⊕ x[1]x[4]x[5]⊕ x[2]x[6]
⊕ x[1]x[3]x[6]⊕ x[0]x[4]x[6]⊕ x[5]x[6]⊕ 1,

y[4] = x[2]x[3]⊕ x[0]x[4]⊕ x[1]x[3]x[4]⊕ x[5]⊕ x[2]x[5]⊕ x[1]x[2]x[5]⊕ x[0]x[3]x[5]
⊕ x[1]x[6]⊕ x[1]x[5]x[6]⊕ x[4]x[5]x[6]⊕ 1,

y[5] = x[0]⊕ x[1]⊕ x[2]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[1]x[2]x[3]⊕ x[1]x[4]
⊕ x[0]x[2]x[4]⊕ x[0]x[5]⊕ x[0]x[1]x[5]⊕ x[3]x[5]⊕ x[0]x[6]⊕ x[2]x[5]x[6],

y[6] = x[0]x[1]⊕ x[3]⊕ x[0]x[3]⊕ x[2]x[3]x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[5]
⊕ x[1]x[3]x[5]⊕ x[1]x[6]⊕ x[1]x[2]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[5]x[6].

Moreover, the ANF of S9 is represented as

y[0] = x[0]x[4]⊕ x[0]x[5]⊕ x[1]x[5]⊕ x[1]x[6]⊕ x[2]x[6]⊕ x[2]x[7]⊕ x[3]x[7]⊕ x[3]x[8]
⊕ x[4]x[8]⊕ 1,

y[1] = x[0]x[2]⊕ x[3]⊕ x[1]x[3]⊕ x[2]x[3]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]⊕ x[2]x[6]
⊕ x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[5]x[8]⊕ 1,

y[2] = x[0]x[1]⊕ x[1]x[3]⊕ x[4]⊕ x[0]x[4]⊕ x[2]x[4]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]
⊕ x[5]x[6]⊕ x[1]x[7]⊕ x[3]x[7]⊕ x[8],

y[3] = x[0]⊕ x[1]x[2]⊕ x[2]x[4]⊕ x[5]⊕ x[1]x[5]⊕ x[3]x[5]⊕ x[4]x[5]⊕ x[5]x[6]
⊕ x[1]x[7]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[4]x[8],

y[4] = x[1]⊕ x[0]x[3]⊕ x[2]x[3]⊕ x[0]x[5]⊕ x[3]x[5]⊕ x[6]⊕ x[2]x[6]⊕ x[4]x[6]
⊕ x[5]x[6]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[7]x[8],

y[5] = x[2]⊕ x[0]x[3]⊕ x[1]x[4]⊕ x[3]x[4]⊕ x[1]x[6]⊕ x[4]x[6]⊕ x[7]⊕ x[3]x[7]
⊕ x[5]x[7]⊕ x[6]x[7]⊕ x[0]x[8]⊕ x[7]x[8],

y[6] = x[0]x[1]⊕ x[3]⊕ x[1]x[4]⊕ x[2]x[5]⊕ x[4]x[5]⊕ x[2]x[7]⊕ x[5]x[7]⊕ x[8]
⊕ x[0]x[8]⊕ x[4]x[8]⊕ x[6]x[8]⊕ x[7]x[8]⊕ 1,

y[7] = x[1]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[2]x[3]⊕ x[0]x[4]⊕ x[5]⊕ x[1]x[6]⊕ x[3]x[6]
⊕ x[0]x[7]⊕ x[4]x[7]⊕ x[6]x[7]⊕ x[1]x[8]⊕ 1,

y[8] = x[0]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[6]⊕ x[5]x[6]
⊕ x[0]x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[6]x[8]⊕ 1.
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B Proof of Propagation Rules

B.1 Proof of Rule 1 (Substitution)

Let F be a function that consists of m S-boxes, where Fi denotes the ith S-box and the bit
length and the algebraic degree is ni bits and di, respectively. The input and the output
take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ), and X and Y denote the input multiset and the

output multiset, respectively.

Assuming that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) ,
⊕

x∈X πu(x) = 0

if W (u) � k(i) holds for all i (1 ≤ i ≤ q). First, we only apply the first S-box and evaluate
the division property of the multiset whose elements are represented by (F1(x1), x2, . . . , xm).
The division property is evaluated as follows

⊕
x∈X

πv(F1(x1), x2, . . . , xm) =
⊕
x∈X

(
(πv1 ◦ F1)(xi)×

m∏
i=2

πvi(xi)

)

=
⊕
x∈X

 ⊕
u1∈F

n1
2

a
(πv1◦F1)
u1 πu1(x1)

×( m∏
i=2

πvi(xi)

)

=
⊕

u1∈F
n1
2

(⊕
x∈X

(
a
(πv1◦F1)
u1 πu1(x1)×

m∏
i=2

πvi(xi)

))
.

Therefore, for any v ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ), the parity becomes 0 if

⊕
x∈X

(
a
(πv1◦F1)
u1 πu1(x1)×

m∏
i=2

πvi(xi)

)
= a

(πv1◦F1)
u1

⊕
x∈X

π(u1,v2,v3,...,vm)(x)

is 0 for all u1 ∈ Fn1
2 . Since the algebraic degree of (πv1 ◦F1) is at most w(v1)×d, a

(πv1◦F1)
u1 = 0

if w(u1) > w(v1)× d1. Therefore, the parity becomes unknown only if we cannot determine
the value of

⊕
x∈X π(u1,v2,v3,...,vm)(x) for w(u1) ≤ w(v1)× d1. From the division property of

the input multiset,
⊕

x∈X π(u1,v2,v3,...,vm)(x) = 0 if W (v1, u2, u3, . . . , um) � k(i) holds for all
i (1 ≤ i ≤ q). Therefore, the following relation

W (u1, v2, v3, . . . , vm) � k(i) ⇒ (w(v1)× d1, w(v2), . . . , w(vm)) � k(i)

⇒ (w(v1), w(v2), . . . , w(vm)) �

(⌈
k
(i)
1

d1

⌉
, k

(i)
2 , k

(i)
3 , . . . , , k(i)m

)

holds, and then the division property of the output multiset becomes Dn1,n2,...,nm

k′(1),k′(2),...,k′(q)
, where

(k
′(j)
1 , k

′(j)
2 , . . . , k′(j)m ) =

(⌈
k
(j)
i

di

⌉
, k
′(j)
2 , . . . , k′(j)m

)
for 1 ≤ j ≤ q.

Finally, Rule 1 is proven by repeating the same procedure for other S-boxes.
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B.2 Proof of Rule 2 (Copy)

Let F be a copy function, where the input x takes a value of Fn2 and the output is calculated
as (y1, y2) = (x, x). Let X and Y be the input multiset and the output multiset, respectively.

Assuming that the multiset X has the division property Dnk ,
⊕

x∈X πu(x) = 0 for w(u) <
k. The division property of Y is evaluated as follows⊕

x∈X
π(v1,v2)(x, x) =

⊕
x∈X

(πv1(x)× πv2(x)) .

When w(v1) +w(v2) is less than k at least, the parity is always 0 because
⊕

x∈X πu(x) = 0
for w(u) < k. Therefore, the division property of Y is Dn,n

k′(1),k′(2),...,k′(k+1) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Thus, Rule 2 is proven.

B.3 Proof of Rule 3 (Compression by XOR)

Let F be a compression function by an XOR, where the input (x1, x2) takes a value of
(Fn2 × Fn2 ) and the output is calculated as y = x1 ⊕ x2. Let X and Y be the input multiset
and the output multiset, respectively.

Assuming that the multiset X has the division property Dn,n
k(1),k(2),...,k(q) ,

⊕
x∈X πu(x) = 0

if W (u) � k(i) holds for all i (1 ≤ i ≤ q). The division property of Y is evaluated as follows⊕
(x1,x2)∈X

πv(x1 ⊕ x2) =
⊕

(x1,x2)∈X

πv(x1 ⊕ x2)

=
⊕

(x1,x2)∈X

(
n∏
i=1

(x1[i]⊕ x2[i])v[i]
)

=
⊕

(x1,x2)∈X

 ⊕
w∈{1,2}n

(
n∏
i=1

xwi [i]
v[i]

) .

Therefore, for any v ∈ Fn2 , the parity becomes 0 if

⊕
(x1,x2)∈X

(
n∏
i=1

xwi [i]
v[i]

)

is 0 for all w ∈ {1, 2}n. In this case, the parity becomes unknown only if we choose at least
k′ bits from y ∈ Y, where

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

Notice that the parity becomes 0 for all v if k′ is greater than n. Thus, Rule 3 is proven.
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B.4 Proof of Rule 4 (Split)

Let F be a split function, where the input x takes a value of Fn2 and the output is calculated
as x = y1‖y2, where (y1, y2) takes a value of (Fn1

2 × F
n−n1
2 ). Let X and Y be the input

multiset and the output multiset, respectively.
Assuming that the multiset X has the division property Dnk ,

⊕
x∈X πu(x) = 0 for w(u) <

k. The division property of Y is evaluated as follows⊕
x∈X

π(v1,v2)(y1, y2) =
⊕
x∈X

πv1‖v2(y1‖y2).

When w(v1) +w(v2) is less than k at least, the parity is always 0 because
⊕

x∈X πu(x) = 0

for w(u) < k. Therefore, the division property of Y is Dn1,n−n1

k′(1),k′(2),...,k′(k+1) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Notice that we cannot choose more than n1 and n − n1 bits from y1 and y2, respectively.
Thus, Rule 4 is proven.

B.5 Proof of Rule 5 (Concatenation)

Let F be a concatenation function, where the input (x1, x2) takes a value of (Fn1
2 ×F

n2
2 ) and

the output is calculated as y = x1‖x2. Let X and Y be the input multiset and the output
multiset, respectively.

Assuming that the multiset X has the division property Dn1,n2

k(1),k(2),...,k(q) ,
⊕

x∈X πu(x) = 0

if W (u) � k(i) holds for all i (1 ≤ i ≤ q). The division property of Y is evaluated as follows⊕
(x1,x2)∈X

πv(x1‖x2) =
⊕

(x1,x2)∈X

πv1‖v2(x1‖x2) =
⊕

(x1,x2)∈X

π(v1,v2)(x1, x2)

Therefore, the parity becomes unknown only if we choose at least k′ bits from y ∈ Y, where

k′ = min{k(1)1 + k
(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

Thus, Rule 5 is proven.
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C Propagation from D7,2,7,7,2,7,7,2,7,7,2,7
[6,2,7,7,2,7,7,2,7,7,2,7]

When the input set has the division property D7,2,7,7,2,7,7,2,7,7,2,7
[6,2,7,7,2,7,7,2,7,7,2,7], the division property of

the set of texts encrypted 6 rounds without the first and the last FL layers is represented
as D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(132) . Here, 132 vectors are represented as follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2) (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1)

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2) (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2) (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2)

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1) (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2) (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1)

(0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0) (0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1) (0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0)

(0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0) (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2) (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1)

(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0) (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0)

(0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0) (0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2)

(0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0) (0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0) (0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2) (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1)

(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2) (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1) (0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0) (0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2) (0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1) (0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0) (0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2) (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1)

(0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0) (0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0)

(0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0) (0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2) (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0)

(0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0)

(0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0) (0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0)

(0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0) (0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 2, 1, 3, 0, 0, 0) (0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0)

(0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0) (0, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 0) (0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0) (0, 0, 0, 0, 0, 0, 5, 1, 1, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Assuming that X has the division property D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(q) ,
⊕

x∈X xj becomes 0 if there

exist k(i) such that k
(i)
j is greater than 1. From the last vector of 132 vectors, k1 takes 2.

Therefore, we can know that the first 7 bits are balanced.
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D 14th Order Differential Characteristic Revisited

In [HTK04] and [TSSK08], they used the 14th order differential characteristic, where 14 bits
PR[10 − 16, 26 − 32] are active and the others are constant. In the characteristic, the first
seven bits of XR

5 are balanced. Moreover, they extended the characteristic to 46th order
differential characteristic, where 14 bits PL[10− 16, 26− 32] and 32 bits PR are active and
the others are constant. In the characteristic, the first seven bits of XL

5 are balanced. We
revisit their characteristics from the perspective of the propagation characteristic of the
division property.

We assume that S9 is a any 9-bit bijective function with degree 2 and S7 is a any 7-bit
bijective function with degree 3. We search for integral characteristics, and then the division
property propagates as follows:

D7,2,7,7,2,7,7,2,7,7,2,7
k 4 rounds D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(12)

k = (0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 7) ⇒ k(1) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

k(2) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

k(3) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

k(4) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

k(5) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

k(6) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

k(7) = (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0)

k(8) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

k(9) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

k(10) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

k(11) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

k(12) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

This result implies that the existence of 14th order differential characteristic is derived from
the bit length and the algebraic degree of S-boxes. Even if different S-boxes are chosen in S7
and S9, the 14th order differential characteristic exists unless the algebraic degree increases.
Similar observations were also discussed in [BF00,CV02].

Moreover, we revisit the 46th order differential characteristic. Namely, we evaluate the
propagation characteristic of the division property, where the input set has the division
property D7,2,7,7,2,7,7,2,7,7,2,7

[0,0,7,0,0,7,7,2,7,7,2,7]. As a result, we can get an integral characteristic that the first

16 bits of XL
5 are balanced. In the simple extension shown in [HTK04] and [TSSK08], only

the first 7 bits are balanced. Thus, we can prove that the number of balanced bits becomes
not 7 bits but 16 bits.
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E Example : Propagation from D7,2,7
[4,2,6] against FI function

We consider the propagation characteristic of the division property against the FI function
(see Fig. 4). Assume that X1 has the division property D7,2,7

[4,2,6].

From X1 to X2 : Since the first 7-bit value and the second 2-bit value are concatenated,
Rule 5 is applied. Thus, the multiset X2 has the division property D9,7

[6,6].

From X2 to X3 : Since the 9-bit S-box S9 is applied, Rule 1 is applied. Thus, the multiset
X3 has the division property D9,7

[3,6].

From X3 to X4 : Since the first 9-bit value are split to 2-bit and 7-bit values, Rule 4 is
applied. Thus, the multiset X4 has the division property D2,7,7

[0,3,6],[1,2,6],[2,1,6].

From X4 to X5 : Since the second 7-bit value is XORed with the last 7-bit value, Rule 2
and Rule 3 are applied. In this case, the propagation of the division property is calculated
as

[0, 3, 6]⇒ [0, 3, 6], [0, 4, 5], [0, 5, 4], [0, 6, 3], [0, 7, 2],

[1, 2, 6]⇒ [1, 2, 6], [1, 3, 5], [1, 4, 4], [1, 5, 3], [1, 6, 2], [1, 7, 1],

[2, 1, 6]⇒ [2, 1, 6], [2, 2, 5], [2, 3, 4], [2, 4, 3], [2, 5, 2], [2, 6, 1], [2, 7, 0].

The position is rotated, and then the division property of X5 has D7,2,7

k(1),k(2),...,k(18) , where

18 vectors are represented as

[6, 0, 3], [5, 0, 4], [4, 0, 5], [3, 0, 6], [2, 0, 7],

[6, 1, 2], [5, 1, 3], [4, 1, 4], [3, 1, 5], [2, 1, 6], [1, 1, 7],

[6, 2, 1], [5, 2, 2], [4, 2, 3], [3, 2, 4], [2, 2, 5], [1, 2, 6], [0, 2, 7].

From X5 to X6 : Since the 7-bit S-box S7 is applied, Rule 1 is applied. Here, we exploit
the vulnerable property of S7. Thus, the following 18 vectors

[4, 0, 3], [2, 0, 4], [2, 0, 5], [1, 0, 6], [1, 0, 7],

[4, 1, 2], [2, 1, 3], [2, 1, 4], [1, 1, 5], [1, 1, 6], [1, 1, 7],

[4, 2, 1], [2, 2, 2], [2, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [0, 2, 7],

are calculated. For example, the vector [2, 0, 5] is removed because [2, 0, 5] � [2, 0, 4].
Similarly, remove redundant vectors, and the division property of X6 has D7,2,7

k(1),k(2),...,k(10) ,

where 10 vectors are represented as

[0, 2, 7], [1, 0, 6], [1, 1, 5], [1, 2, 4], [2, 0, 4],

[2, 1, 3], [2, 2, 2], [4, 0, 3], [4, 1, 2], [4, 2, 1],
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From X6 to X7 : Since the first 7-bit value is XORed with the last 7-bit value, Rule 2 and
Rule 3 are applied. In this case, the propagation of the division property is calculated as

[0, 2, 7]⇒ [0, 2, 7], [1, 2, 6], [2, 2, 5], [3, 2, 4], [4, 2, 3], [5, 2, 2], [6, 2, 1], [7, 2, 0].

[1, 0, 6]⇒ [1, 0, 6], [2, 0, 5], [3, 0, 4], [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],

[1, 1, 5]⇒ [1, 1, 5], [2, 1, 4], [3, 1, 3], [4, 1, 2], [5, 1, 1], [6, 1, 0],

[1, 2, 4]⇒ [1, 2, 4], [2, 2, 3], [3, 2, 2], [4, 2, 1], [5, 2, 0],

[2, 0, 4]⇒ [2, 0, 4], [3, 0, 3], [4, 0, 2], [5, 0, 1], [6, 0, 0],

[2, 1, 3]⇒ [2, 1, 3], [3, 1, 2], [4, 1, 1], [5, 1, 0],

[2, 2, 2]⇒ [2, 2, 2], [3, 2, 1], [4, 2, 0],

[4, 0, 3]⇒ [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],

[4, 1, 2]⇒ [4, 1, 2], [5, 1, 1], [6, 1, 0],

[4, 2, 1]⇒ [4, 2, 1], [5, 2, 0],

Remove redundant vectors, the position is rotated, and then the division property of X7

has D2,7,7

k(1),k(2),...,k(17) , where 17 vectors are represented as

[0, 0, 7], [0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 6, 1], [1, 0, 5], [1, 1, 4],

[1, 2, 3], [1, 3, 2], [1, 5, 1], [2, 0, 4], [2, 1, 3], [2, 2, 2], [2, 4, 1], [2, 7, 0].

From X7 to X8 : Since the first 2-bit value and the second 7-bit value are concatenated,
Rule 5 is applied. Then, the following 17 vectors

[0, 7], [0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [1, 5], [2, 4],

[3, 3], [4, 2], [6, 1], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0],

are calculated. Remove redundant vectors, and the division property of X8 hasD9,7

k(1),k(2),...,k(7) ,

where 7 vectors are represented as

[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0].

From X8 to X9 : Since the 9-bit S-box S9 is applied, Rule 1 is applied. Then, the following
7 vectors

[0, 6], [1, 5], [1, 4], [2, 3], [2, 2], [3, 1], [9, 0],

are calculated. Remove redundant vectors, and the division property of X9 hasD9,7

k(1),k(2),...,k(5) ,

where 5 vectors are represented as

[0, 6], [1, 4], [2, 2], [3, 1], [9, 0].

From X9 to X10 : Since the first 9-bit value are split to 2-bit and 7-bit values, Rule 4 is
applied. Thus, the multiset X10 has the division property D2,7,7

k(1),k(2),...,k(10) , where 10

vectors are represented as

[0, 6]⇒ [0, 0, 6],

[1, 4]⇒ [0, 1, 4], [1, 0, 4],

[2, 2]⇒ [0, 2, 2], [1, 1, 2], [2, 0, 2],

[3, 1]⇒ [0, 3, 1], [1, 2, 1], [2, 1, 1],

[9, 0]⇒ [2, 7, 0].
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From X10 to X11 : Since the second 7-bit value is XORed with the last 7-bit value, Rule 2
and Rule 3 are applied. In this case, the propagation of the division property is calculated
as

[0, 0, 6]⇒ [0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 5, 1], [0, 6, 0],

[0, 1, 4]⇒ [0, 1, 4], [0, 2, 3], [0, 3, 2], [0, 4, 1], [0, 5, 0]

[1, 0, 4]⇒ [1, 0, 4], [1, 1, 3], [1, 2, 2], [1, 3, 1], [1, 4, 0]

[0, 2, 2]⇒ [0, 2, 2], [0, 3, 1], [0, 4, 0]

[1, 1, 2]⇒ [1, 1, 2], [1, 2, 1], [1, 3, 0]

[2, 0, 2]⇒ [2, 0, 2], [2, 1, 1], [2, 2, 0]

[0, 3, 1]⇒ [0, 3, 1], [0, 4, 0]

[1, 2, 1]⇒ [1, 2, 1], [1, 3, 0]

[2, 1, 1]⇒ [2, 1, 1], [2, 2, 0]

[2, 7, 0]⇒ [2, 7, 0]

Remove redundant vectors, the position is rotated, and then the division property of
X11 has D7,2,7

k(1),k(2),...,k(12) , where 12 vectors are represented as

[0, 0, 4], [0, 1, 3], [0, 2, 2], [1, 0, 3], [1, 1, 2], [1, 2, 1],

[2, 0, 2], [2, 1, 1], [2, 2, 0], [4, 0, 1], [4, 1, 0], [6, 0, 0].

Algorithm 1 can automatically search for the propagation characteristic of the division prop-
erty from any D7,2,7

k . We create the propagation characteristic tables, which are shown in
Appendix G, by implementing Algorithm 1.

F Experimental Search for Propagation Characteristic of Division
Property

We also experimentally evaluated the propagation characteristic against the FI function. In
our experimental search, for any D7,2,7

[k1,k2,k3]
, we created 100 random input multisets, and then

evaluated the propagation characteristic. As a result, we confirmed that the propagation
characteristics of the division property against the FI function are the same as those shown
in Appendix G.
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G Propagation Characteristic Table against FI function

Table 4. Division property of input is D7,2,7
0,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(0 0 0) (0 0 0)

(0 0 1) (0 0 1) (0 1 0) (1 0 0)

(0 0 2) (0 0 1) (0 1 0) (1 0 0)

(0 0 3) (0 0 1) (0 2 0) (1 0 0)

(0 0 4) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(0 0 5) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (2 0 0)

(0 0 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(0 0 7) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(0 1 0) (0 0 1) (0 1 0) (1 0 0)

(0 1 1) (0 0 1) (0 1 0) (2 0 0)

(0 1 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(0 1 3) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(0 1 4) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(0 1 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(0 1 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(0 1 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(0 2 0) (0 0 1) (0 1 0) (1 0 0)

(0 2 1) (0 0 1) (0 1 0) (2 0 0)

(0 2 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(0 2 3) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(0 2 4) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(0 2 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(0 2 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(0 2 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)
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Table 5. Division property of input is D7,2,7
1,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(1 0 0) (0 0 1) (0 1 0) (1 0 0)

(1 0 1) (0 0 1) (0 1 0) (2 0 0)

(1 0 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(1 0 3) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(1 0 4) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(1 0 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(1 0 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(1 0 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(1 1 0) (0 0 1) (0 1 0) (1 0 0)

(1 1 1) (0 0 1) (0 1 0) (2 0 0)

(1 1 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(1 1 3) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(1 1 4) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(1 1 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(1 1 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(1 1 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(1 2 0) (0 0 1) (0 1 0) (2 0 0)

(1 2 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(1 2 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(1 2 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(1 2 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(1 2 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(1 2 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(1 2 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)
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Table 6. Division property of input is D7,2,7
2,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(2 0 0) (0 0 1) (0 1 0) (1 0 0)

(2 0 1) (0 0 1) (0 1 0) (2 0 0)

(2 0 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(2 0 3) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)

(2 0 4) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(2 0 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)

(2 0 6) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(2 0 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(2 1 0) (0 0 1) (0 1 0) (2 0 0)

(2 1 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(2 1 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(2 1 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(2 1 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(2 1 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(2 1 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(2 1 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(2 2 0) (0 0 1) (0 1 0) (2 0 0)

(2 2 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(2 2 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(2 2 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(2 2 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(2 2 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(2 2 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(2 2 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)
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Table 7. Division property of input is D7,2,7
3,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(3 0 0) (0 0 1) (0 1 0) (2 0 0)

(3 0 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(3 0 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(3 0 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(3 0 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 0 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 0 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(3 0 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(3 1 0) (0 0 1) (0 1 0) (2 0 0)

(3 1 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(3 1 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(3 1 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(3 1 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 1 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 1 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(3 1 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(3 2 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(3 2 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 2 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 2 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(3 2 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(3 2 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(3 2 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(3 2 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)
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Table 8. Division property of input is D7,2,7
4,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(4 0 0) (0 0 1) (0 1 0) (2 0 0)

(4 0 1) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(4 0 2) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(4 0 3) (0 0 2) (0 1 1) (1 0 1) (1 1 0) (3 0 0)

(4 0 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 0 5) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 0 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(4 0 7) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(4 1 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(4 1 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 1 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 1 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 1 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(4 1 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(4 1 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(4 1 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(4 2 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(4 2 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 2 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 2 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(4 2 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(4 2 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(4 2 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(4 2 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)
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Table 9. Division property of input is D7,2,7
5,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(5 0 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(5 0 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 0 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 0 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 0 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 0 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 0 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(5 0 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(5 1 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(5 1 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 1 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 1 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 1 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 1 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 1 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(5 1 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(5 2 0) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(5 2 1) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 2 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 2 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(5 2 4) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(5 2 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(5 2 6) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(5 2 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (4 0 2) (4 1 1) (4 2 0)
(6 0 1) (6 1 0)
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Table 10. Division property of input is D7,2,7
6,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(6 0 0) (0 0 2) (0 1 1) (0 2 0) (1 0 1) (1 1 0) (3 0 0)

(6 0 1) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(6 0 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(6 0 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (4 0 0)

(6 0 4) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 0 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 0 6) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(6 0 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(6 1 0) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(6 1 1) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 1 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 1 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 1 4) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(6 1 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(6 1 6) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(6 1 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (4 0 2) (4 1 1) (4 2 0)
(6 0 1) (6 1 0)

(6 2 0) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(6 2 1) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 2 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 2 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(6 2 4) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(6 2 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(6 2 6) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(6 2 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (4 0 2) (4 1 1) (4 2 0)
(6 0 1) (6 1 0)
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Table 11. Division property of input is D7,2,7
7,∗,∗

k of D7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7

k(1),k(2),...,k(q)

(7 0 0) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(7 0 1) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 0 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 0 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 0 4) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(7 0 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(7 0 6) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(7 0 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (4 0 2) (4 1 1) (4 2 0)
(6 0 1) (6 1 0)

(7 1 0) (0 0 2) (0 1 1) (0 2 0) (2 0 1) (2 1 0) (4 0 0)

(7 1 1) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 1 2) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 1 3) (0 0 3) (0 1 2) (0 2 1) (1 0 2) (1 1 1) (1 2 0) (3 0 1) (3 1 0) (5 0 0)

(7 1 4) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(7 1 5) (0 0 4) (0 1 3) (0 2 2) (1 0 3) (1 1 2) (1 2 1) (2 0 2) (2 1 1) (2 2 0) (4 0 1) (4 1 0) (6 0 0)

(7 1 6) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (3 0 2) (3 1 1) (3 2 0)
(5 0 1) (5 1 0) (7 0 0)

(7 1 7) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (2 0 3) (2 1 2) (2 2 1) (4 0 2) (4 1 1) (4 2 0)
(6 0 1) (6 1 0)

(7 2 0) (0 0 5) (0 1 4) (0 2 3) (1 0 4) (1 1 3) (1 2 2) (3 0 3) (3 1 2) (3 2 1) (5 0 2) (5 1 1) (5 2 0)
(7 0 1) (7 1 0)

(7 2 1) (0 0 6) (0 1 5) (0 2 4) (1 0 5) (1 1 4) (1 2 3) (2 0 4) (2 1 3) (2 2 2) (4 0 3) (4 1 2) (4 2 1)
(6 0 2) (6 1 1) (6 2 0)

(7 2 2) (0 0 6) (0 1 5) (0 2 4) (1 0 5) (1 1 4) (1 2 3) (2 0 4) (2 1 3) (2 2 2) (4 0 3) (4 1 2) (4 2 1)
(6 0 2) (6 1 1) (6 2 0)

(7 2 3) (0 0 6) (0 1 5) (0 2 4) (1 0 5) (1 1 4) (1 2 3) (2 0 4) (2 1 3) (2 2 2) (4 0 3) (4 1 2) (4 2 1)
(6 0 2) (6 1 1) (6 2 0)

(7 2 4) (0 0 7) (0 1 6) (0 2 5) (1 0 6) (1 1 5) (1 2 4) (2 0 5) (2 1 4) (2 2 3) (3 0 4) (3 1 3) (3 2 2)
(5 0 3) (5 1 2) (5 2 1) (7 0 2) (7 1 1) (7 2 0)

(7 2 5) (0 0 7) (0 1 6) (0 2 5) (1 0 6) (1 1 5) (1 2 4) (2 0 5) (2 1 4) (2 2 3) (3 0 4) (3 1 3) (3 2 2)
(5 0 3) (5 1 2) (5 2 1) (7 0 2) (7 1 1) (7 2 0)

(7 2 6) (0 2 7) (1 1 7) (1 2 6) (2 0 7) (2 1 6) (2 2 5) (3 0 6) (3 1 5) (3 2 4) (4 0 5) (4 1 4) (4 2 3)
(5 0 4) (5 1 3) (5 2 2) (7 0 3) (7 1 2) (7 2 1)

(7 2 7) (7 2 7)
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H One of Propagation Characteristic Table against FO function

Table 12. Division property of input is D7,2,7,7,2,7
1,1,2,3,1,5

k of D7,2,7,7,2,7
k k(1),k(2), . . . ,k(q) of D7,2,7,7,2,7

k(1),k(2),...,k(q)

(1 1 2 3 1 5) (0 0 0 0 0 4) (0 0 0 0 1 3) (0 0 0 0 2 2) (0 0 0 1 0 3) (0 0 0 1 1 2) (0 0 0 1 2 1)
(0 0 0 2 0 2) (0 0 0 2 1 1) (0 0 0 2 2 0) (0 0 0 3 0 1) (0 0 0 3 1 0) (0 0 0 5 0 0)
(0 0 1 0 0 3) (0 0 1 0 1 2) (0 0 1 0 2 1) (0 0 1 1 0 2) (0 0 1 1 1 1) (0 0 1 1 2 0)
(0 0 1 2 0 1) (0 0 1 2 1 0) (0 0 1 3 0 0) (0 0 2 0 0 2) (0 0 2 0 1 1) (0 0 2 0 2 0)
(0 0 2 1 0 1) (0 0 2 1 1 0) (0 0 2 2 0 0) (0 0 3 0 0 1) (0 0 3 0 1 0) (0 0 3 1 0 0)
(0 0 5 0 0 0) (0 1 0 0 0 3) (0 1 0 0 1 2) (0 1 0 0 2 1) (0 1 0 1 0 2) (0 1 0 1 1 1)
(0 1 0 1 2 0) (0 1 0 2 0 1) (0 1 0 2 1 0) (0 1 0 3 0 0) (0 1 1 0 0 2) (0 1 1 0 1 1)
(0 1 1 0 2 0) (0 1 1 1 0 1) (0 1 1 1 1 0) (0 1 1 2 0 0) (0 1 2 0 0 1) (0 1 2 0 1 0)
(0 1 2 1 0 0) (0 1 4 0 0 0) (0 2 0 0 0 2) (0 2 0 0 1 1) (0 2 0 0 2 0) (0 2 0 1 0 1)
(0 2 0 1 1 0) (0 2 0 2 0 0) (0 2 1 0 0 1) (0 2 1 0 1 0) (0 2 1 1 0 0) (0 2 3 0 0 0)
(1 0 0 0 0 3) (1 0 0 0 1 2) (1 0 0 0 2 1) (1 0 0 1 0 2) (1 0 0 1 1 1) (1 0 0 1 2 0)
(1 0 0 2 0 1) (1 0 0 2 1 0) (1 0 0 4 0 0) (1 0 1 0 0 2) (1 0 1 0 1 1) (1 0 1 0 2 0)
(1 0 1 1 0 1) (1 0 1 1 1 0) (1 0 1 2 0 0) (1 0 2 0 0 1) (1 0 2 0 1 0) (1 0 2 1 0 0)
(1 0 4 0 0 0) (1 1 0 0 0 2) (1 1 0 0 1 1) (1 1 0 0 2 0) (1 1 0 1 0 1) (1 1 0 1 1 0)
(1 1 0 2 0 0) (1 1 1 0 0 1) (1 1 1 0 1 0) (1 1 1 1 0 0) (1 1 3 0 0 0) (1 2 0 0 0 1)
(1 2 0 0 1 0) (1 2 0 1 0 0) (1 2 2 0 0 0) (2 0 0 0 0 2) (2 0 0 0 1 1) (2 0 0 0 2 0)
(2 0 0 1 0 1) (2 0 0 1 1 0) (2 0 0 3 0 0) (2 0 1 0 0 1) (2 0 1 0 1 0) (2 0 1 1 0 0)
(2 0 3 0 0 0) (2 1 0 0 0 1) (2 1 0 0 1 0) (2 1 0 1 0 0) (2 1 2 0 0 0) (2 2 1 0 0 0)
(3 0 0 0 0 1) (3 0 0 0 1 0) (3 0 0 2 0 0) (3 0 2 0 0 0) (3 1 1 0 0 0) (3 2 0 0 0 0)
(4 0 0 1 0 0) (4 0 1 0 0 0) (4 1 0 0 0 0) (6 0 0 0 0 0)
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