
Two Round Information-Theoretic MPC

with Malicious Security

Prabhanjan Ananth∗

MIT
Arka Rai Choudhuri†

JHU
Aarushi Goel‡

JHU
Abhishek Jain§

JHU

Abstract

We provide the first constructions of two round information-theoretic (IT) secure multiparty compu-
tation (MPC) protocols in the plain model that tolerate any t < n/2 malicious corruptions. Our protocols
satisfy the strongest achievable standard notions of security in two rounds in different communication
models.

Previously, IT-MPC protocols in the plain model either required a larger number of rounds, or a
smaller minority of corruptions.

∗prabhanjan@csail.mit.edu
†achoud@cs.jhu.edu
‡aarushig@cs.jhu.edu
§abhishek@cs.jhu.edu

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Technical Overview . 4
1.3 Related Work . 9

2 Preliminaries 10
2.1 Information-Theoretic MPC . 10
2.2 Garbling Schemes . 12

3 Helper Primitives 13
3.1 Delayed-Function Two-Round Secure MPC for Quadratic Polynomials 13
3.2 Delayed-Function Two-round Secure MPC . 14

3.2.1 Two-Input Multiparty Functionalities . 15
3.2.2 Security . 15
3.2.3 Construction . 17
3.2.4 Proof of Security . 18

3.3 Information-Theoretic One-Time Multi-Key MACs . 23

4 Generalized Conforming Protocols 25
4.1 Construction . 26

5 Two-round MPC over Broadcast and P2P: Security with Abort 29
5.1 A Two-round Secure MPC Satisfying Privacy with Knowledge of Outputs 29

5.1.1 Construction. 29
5.1.2 Proof of Security . 38

5.2 From Privacy with Knowledge of Outputs to Security with Abort 47

6 Impossibility of IT-MPC with Public Reconstruction of Output Property 49

7 Two-Round MPC over P2P: Security with Selective Abort 51
7.1 Construction . 51
7.2 Proof of Security . 52

2

1 Introduction

The ability to securely compute on private datasets of individuals has wide applications of tremendous ben-
efits to society. The notion of secure multiparty computation (MPC) [Yao86, GMW87, BOGW88, CCD88]
provides a solution to the problem of computing on private data by allowing a group of mutually distrusting
parties to jointly evaluate any function over their private inputs in a manner that reveals nothing beyond
the output of the function.

Information-Theoretic MPC. Over the years, a large body of works have investigated the design of
MPC protocols against computationally bounded as well as computationally unbounded adversaries. In this
work, we focus on the latter, namely, MPC with information-theoretic (IT) security.

The seminal works of [BOGW88, CCD88] established the first feasibility results for IT-MPC for general
functionalities. These works also established that IT security for non-trivial functions is only possible when
at most t < n/2 of the n parties are corrupted. In scenarios where honest majority is a viable assumption,
IT-MPC protocols are extremely appealing over their computational counterparts. In particular, they are
typically more efficient since they do not use any computational primitives. Furthermore, IT-MPC protocols
achieve security in models such as concurrent composition [Can01] without relying on external trust [CKL03].

Round Complexity. In this work, we investigate the minimal conditions necessary for IT-MPC in the
plain model. We focus on round complexity – a well studied complexity measure in distributed protocol
design. We consider the standard simultaneous-message model of communication for MPC where in any
round, each party can send messages to other parties, depending upon the communication from the previous
rounds. We consider security against malicious adversaries who may corrupt any subset of t < n/2 parties
and use arbitrary strategy to decide their protocol messages.

It is well known that two rounds of communication are necessary for MPC [HLP11]. We ask whether
two rounds are sufficient for achieving IT security:

Does there exist two round IT-MPC for any t < n/2 corruptions?

The above question has remained open for the last three decades. In particular, while constant round
IT-MPC protocols are known for any t < n/2 corruptions (e.g., [BIB89, IK00]), the only known two round
IT-MPC protocols are due to [IK00, IKP10, IKKP15] who require two-thirds honest majority (as opposed
to standard honest majority). We refer the reader to Section 1.3 for a comprehensive survey of prior work,
and Section 1.1 for comparison with the recent works of [ABT18, GIS18].

1.1 Our Results

In this work, we resolve the above question in the affirmative.

Main Result. Our first result is a two-round IT-MPC protocol for NC1 functions that tolerates any
t < n/2 corruptions. In the case of malicious adversaries, our protocol achieves statistical security with
abort – the standard notion of security (c.f. [Gol04]) where an adversary may prevent the honest parties
from learning the output by aborting the computation. In the setting of two rounds, this is known to be the
strongest achievable standard notion of security [GIKR02].

In the case of semi-honest adversaries, our protocol achieves perfect security.

Theorem 1.1. There exists a two round MPC protocol for NC1 functions that achieves:

• Statistical security with abort against t < n/2 malicious corruptions.

• Perfect security against t < n/2 semi-honest corruptions.

Impossibility of IT-MPC with Public Reconstruction of Output. All recent two round MPC
protocols [ACGJ18, GS18a, GIS18, ABT18, ABT19] satisfy a public reconstruction of output property, where
given (only) the public transcript of a protocol, any (possibly external) party can compute the output of

3

the protocol. Unlike these protocols, our protocol in Theorem 1.1 does not satisfy this property. In fact, we
show (in Section 6) that any IT-MPC protocol that achieves security with abort and public reconstruction
of output property1 is impossible.

Theorem 1.2. There does not exist an IT-MPC protocol that achieves security with abort and public recon-
struction of output property.

Protocols over P2P Channels. Our protocol in Theorem 1.1 necessarily uses both broadcast and private
point-to-point (P2P) channels for achieving security against malicious adversaries.2 We next investigate
whether it is possible to construct two round IT-MPC against malicious adversaries by using only P2P
channels.3

Our second positive result is a two round IT-MPC protocol over P2P channels that achieves statistical
security with selective abort against any t < n/2 malicious corruptions. This notion [GL05] is a weakening
of the standard notion of security of (unanimous) abort in that it allows the adversary to separately decide
for each honest party whether it will receive the correct output or ⊥. Achieving security with abort in two
rounds over P2P channels is known to be impossible in general [FL82, PR18]. This establishes security with
selective abort as the strongest achievable standard notion of security in two rounds.

Theorem 1.3. There exists a two round MPC protocol over P2P channels for NC1 functions that achieves
statistical security with selective abort against t < n/2 malicious corruptions.

Put together, Theorems 1.1 and 1.3 fully resolve the round complexity of maliciously secure IT-MPC (for
NC1 functions).

Comparison with [ABT18, GIS18, ABT19]. Very recently, Applebaum et al. [ABT18] constructed two
round perfectly secure MPC for NC1 against any t < n/2 semi-honest corruptions. Garg et al. [GIS18]
achieve a similar result; however, the communication complexity of their protocols grows super-polynomially
with the number of parties. Neither of these works consider security against malicious adversaries, which is
the main focus of our work. A recent, independent and concurrent work of Applebaum et al. [ABT19] also
considers the case of malicious adversaries. Similar to our work, they also construct a two-round statistically
secure protocol for NC1 functionalities that achieves security with selective abort. However, they do not
consider security with (unanimous) abort in the information-theoretic setting.

1.2 Technical Overview

We first focus on achieving two-round IT-secure MPC in the presence of both broadcast and point to point
communication channels.

Recent works on two-round secure MPC [GS17, BL18, GS18b] follow a common blueprint of squishing
an arbitrary round secure protocol, referred to as inner protocol, into a two round secure protocol, referred
to as outer protocol using garbled circuits. Roughly speaking, every party in the outer protocol computes t
garbled circuits, one for every round of the inner protocol. The job of the jth garbled circuit computed by
the ith party is to emulate the computation of the next message function of the ith party in the jth round.
Every party sends the generated t garbled circuits to the other parties.

The main challenge here is to ensure that the garbled circuits can talk to each other the same way the
parties in the inner protocol talk to each other. The tools used to address this challenge differs from one
work to another: [GS17] use bilinear maps, [GS18b] use two-round oblivious transfer, [BL18, GMS18] use
two-round oblivious oblivious transfer and additionally garbled circuits and finally, [ACGJ18, ABT18, GIS18]
use information-theoretic MPC protocols. Of particular interest to us is the work of Ananth et al. [ACGJ18]
who show how to achieve maliciously secure two-round secure MPC in the honest majority setting for
polynomial-sized circuits assuming only one-way functions.

1The exact formulation of this property is slightly more technical; we refer the reader to Section 6.
2In the case of semi-honest adversaries, broadcasts can be trivially emulated over P2P channels without any increase in

round complexity.
3Note that the complementary goal of IT-MPC over only broadcast channels is known to be impossible.

4

Background on [ACGJ18]. They propose the following template: The first step is to construct helper
protocols that enable communication between garbled circuits in the outer protocol. The helper protocols
they consider are delayed-function two-round MPC protocols, handling malicious adversaries, for two func-
tionalities defined below. In a delayed-function two-round MPC protocol, the functionality is only available
to the parties after the first round.

• The first functionality, parameterized by a bit v, is defined as follows: it takes as input r1 from the
first party, r2 from the second party and outputs r1 ⊕ r2 ⊕ v.

• The second functionality, parameterized by two bits (v1, v2), is defined as follows: it takes as input
a string K from the first party (interpreted as an input wire label of a garbled circuit), three bits
(r1, r2, r3) from the second party and outputs Kr3⊕NAND(v1⊕r1,v2⊕v3).

Observe that both these functionalities can be represented by quadratic polynomials over F2 and there exist
two-round protocols for quadratic polynomials in the literature (see [IKP10]). While these protocols do not
achieve full-fledged malicious security, they achieve a weaker property termed as privacy with knowledge of
outputs and [ACGJ18] show how this weaker property is sufficient for their goal.

The next step is to transform the inner interactive protocol into an outer two-round protocol using
the helper protocols. Since the helper protocols can only compute restricted functionalities, they impose
a restriction on the “structure” of the inner protocol. In particular, every round of the inner interactive
protocol is forced to only perform a single NAND computation. The term conforming protocols (originally
coined by [GS18b]) was used to described such interactive protocols.

Informally, a conforming protocol proceeds in a sequence of rounds. In every round, a party, termed as
“receiver”, obtains a global state from another party, termed as “sender”, that encodes information about
the current states of all the parties. Every party possesses a decryption key that lets it decode only a certain
section of the global state. Once the party decodes the appropriate information, it then performs some local
computation and then re-encodes the result and the resulting updated global state will be broadcasted to
the rest of the parties, termed “listeners”. Thus in every round, there is a sender, receiver and the rest of
the parties are listeners.

At first, it might seem unclear as to why conforming protocols should exist at all. Luckily, an arbitrary
round information-theoretically secure protocol can be transformed into a conforming protocol. However, the
transformation demonstrated by [ACGJ18] blows up the round complexity of the conforming protocol. In par-
ticular, even if the original protocol had a constant number of rounds, the corresponding conforming protocol
will now have round complexity proportional to the size of the circuit being securely computed. Neverthe-
less, their transformation from a conforming protocol into the two-round outer protocol for polynomial-sized
circuits is unaffected by the round complexity of the underlying conforming protocol.

Limitations on extending [ACGJ18] to IT setting. To construct maliciously secure information-
theoretically secure MPC protocols for NC1 circuits, a natural direction to explore is to adapt the construc-
tion of [ACGJ18] to the information-theoretic setting. The only part in the construction where one-way
functions are used is in the generation of garbled circuits. If we restrict to NC1 circuits, we could hope to
use garbling schemes with perfect security [IK02]. These garbling schemes have the property that the size of
the wire labels for the input wires grows exponentially in the depth of the circuit being garbled and linearly
in the size of the garbled circuit.

This results in a fundamental issue in using information-theoretic garbling schemes to replace the garbled
circuits based on one-way functions in [ACGJ18]: as part of the outer protocol, every party sends a sequence
of garbled circuits, where every garbled circuit encodes wire labels for the next garbled circuit. Recall
that every garbled circuit emulates the next message function in a round and it needs to encode the wire
labels for the next garbled circuit to enable transferring information from one round to the next. Once
we use information-theoretically secure garbling schemes, the communication complexity now blows up
exponentially in the length of the chain of garbled circuits. Since the length of the chain is the round
complexity of the underlying conforming protocol, this results in exponential communication complexity
even for NC1 functionalities.

5

Our Approach. As a first step towards achieving our goal, we consider conforming protocols that do not
restrict every round in the outer protocol to be just a single NAND computation. More generally, we allow
the next message in every round of the conforming protocol to be a polynomial-size NC1 circuit. We term
this class of protocols to be generalized conforming protocols. On the one hand, the advantage of considering
generalized conforming protocols is that we can construct this in constant number of rounds for NC1 which
makes it suitable to use it towards constructing a two-round protocol in the information-theoretic setting.
On the other hand, the helper protocols designed in [ACGJ18] are no longer compatible with our notion of
generalized conforming protocols; recall that since the helper protocols in [ACGJ18] were associated with
quadratic polynomials, they imposed the requirement that every round in the conforming protocol is a single
NAND computation.

To address this issue, we design new helper protocols that are “compatible” with generalized conforming
protocols. Specifically, we require that the helper protocols are associated with functionalities computable
in NC1. By carefully examining the interiors of [ACGJ18], it can be observed that it suffices to construct
helper protocols for three-input functionalities computable in NC1; these are the functionalities where only
three parties have inputs. Informally, the three parties correspond to a sender party that sends a message
in a round, a receiver party that receives a message in a round and finally, a listener party that listens to
the communication from the sender to the receiver. Even though there are multiple listeners in every round
in the conforming protocol, it suffices to design helper protocols for every listener separately. In the helper
protocol, the inputs of the sender and the receiver are their private states4 and the listener’s input would
be the wire labels for its garbled circuits. Note, however, that the functionality associated with the helper
protocol is as complex as the next message function of the conforming protocol.

As such, it is unclear how to construct helper protocols even for three-input functionalities; in fact, if we
had a two-round secure protocol for the three-input functionality that outputs the product of its inputs, then
it could be bootstrapped to achieve two-round secure protocols for arbitrary functionalities via randomized
encodings [IK00]. In light of this, the problem of constructing two-round secure protocols for three-input
functionalities seems as hard as constructing two-round secure protocols for all functionalities computable
in NC1.

We resolve this dilemma in two main steps:

• We first focus on a weaker goal: constructing two-round information theoretically secure protocols for
two-input (as opposed to three-input) functionalities.

• We then go back to our definition of generalized conforming protocols and impose additional structure
on generalized conforming protocols – without blowing up their round complexity – to make them
compatible with helper protocols for two-input functionalities.

We start by defining and constructing helper protocols for two-input functionalities.

Helper Protocols for Two-Input Functionalities. A two-input multiparty functionality, as the name
suggests, is a functionality where only the first two parties get inputs while the rest of the parties are input-
less. We consider two-input functionalities of the following form: these functionalities U are parameterized
by two NC1 functions f,G such that U(x1, x2,⊥, · · · ,⊥) = G(x1, f(x2)). At first sight, this representation
may seem unnecessary since one can rewrite U as another NC1 function G′ such that U(x1, x2,⊥, · · · ,⊥) =
G′(x1, x2). However, the functions G and f we use to express U makes a difference when we state the security
guarantees. Moreover, we require that the resulting helper protocol satisfies delayed-function property,
meaning that the functionalities is only available to the parties after the first round.

Informally, we require the following asymmetric security guarantees:

• If the first party is honest then no information about its input x1 should be leaked beyond G(x1, y
∗).

Ideally, we would require y∗ to be the output of f on some input x∗2. Here, we relax the security
requirement to allow y∗ to not even belong in the range of f .

4Since the listener listens to the conversation, the receiver and the sender would share a secret string in order to emulate
communication over private channels (which are necessary for information-theoretic security). This is the reason why the
receiver should also input its private state.

6

• If the second party is honest then no information about its input x2 should be leaked beyond f(x2).
In particular, we allow the adversary to learn the value f(x2) during the execution of the protocol. In
addition, we only require that the simulator extracts the implicit input (interpreted as f(x2)) and not
x2 itself.

Both the security requirements are non-standard and indeed, its should not be clear in what context these
two security properties would be useful. To answer this, lets recall the structure of the conforming protocol:
in every round, every party receives a global state, decodes a portion of the global state, computes on it and
re-encodes the result. Looking ahead, when the conforming protocol is used alongside the helper protocols,
the function f would have the global state hardwired inside its code; it takes as input private state of the
party, represented by x2, performs computation and then re-encodes the result. So the output f(x2) denotes
the resulting global state.

Let us revisit the security requirements stated above. Allowing for y∗ to not be in the range of f reduces
to allowing for the second party to be malicious in the conforming protocol. We handle this by designing
conforming protocols already secure against malicious parties. Regarding the second security requirement,
revealing the value f(x2) reduces to the party revealing the updated global state. Since a party anyways has
to broadcast the entire global state in the conforming protocol, its perfectly safe to reveal f(x2).

We now give a glimpse of our construction of two-round protocol for two-input functionalities. Our
construction is heavily inspired by the techniques introduced in the work of Benhamouda and Lin [BL18].

• In the first round, the second party holding the input x2, sends a garbling GC2 of a universal circuit
with x2 hardwired inside it. The first party, holding the input x1, receives GC2 and computes another
garbling GC1 of a circuit, with x1 hardwired inside it, that is defined as follows: it takes as input, wire
labels of GC2 with respect to input f , evaluates GC2 using these input wire labels to obtain f(x2) and
finally outputs G(x1, f(x2)).

• Simultaneously, all the parties execute a secure MPC protocol for quadratic polynomials, that takes
as input wire labels of GC2 from the second party, input wire labels of GC1 from the first party and
finally, computes GC1 input wire labels associated with the input which is in turn defined to be the
GC2 input wire labels associated with f .

At the end of the second round, every party evaluates GC1 to obtain G(x1, f(x2)).
We briefly describe the simulation strategy for arguing security of the above construction. If the second

party is corrupted then the simulator extracts all the wire labels of GC2 and then evaluates GC2 using the
wire labels of f to obtain the value y∗. The simulator then sends y∗ to the ideal functionality, which responds
back with G(x1, y

∗). The simulator cannot verify that the second party indeed sent a valid garbling of the
universal circuit. However, this still satisfies our security definition since the simulator is not required to
extract x2 but only the value y∗.

The case when the first party is corrupted can similarly be argued by designing a simulator that first
extracts all the wire labels of GC1 and then simulates GC2 using the value f(x2).

CLC property of Generalized Conforming Protocols. As explained earlier, helper protocols for two-
input functionalities is as such incompatible with our current definition of generalized conforming protocols.
Recall that the reason for incompatibility was that in every round of the generalized conforming protocol
there were three parties participating. To remedy this situation, we introduce a new structural property for
generalized conforming protocols, that we refer to as copy-local-copy (CLC) property. Specifically, we require
that a party in every round, behaves as follows:

• Copy operation: first, every party copies the information transferred on the communication channels
onto its own private state.

• Local computation: then it performs computation on its own local state.

• Copy operation: finally, it copies the result obtained onto the communication channel.

7

The CLC property effectively “breaks down” each three-input computation required in the earlier notion
of generalized conforming protocol into three different operations. Now, given a generalized conforming
protocol that satisfies the CLC property, it suffices to devise helper protocols for the above three operations.

The helper protocols for the first copy operation, and also the third copy operation, are associated with
three parties: speaker, receiver and the listener. However, since the copy operation is a simple function,
we observe that it suffices to use helper protocols for quadratic polynomials to implement this. The helper
protocol for the local computation, however, is only associated with two parties: the party performing
the local computation and the listener. Now, we use the delayed-function secure protocol for two-input
functionalities constructed earlier to realize helper protocols associated with the local computation operation.

Since we divide every round of the protocol into three parts, a party sends three garbled circuits for every
round of the conforming protocol, instead of just one.

Summary. We now summarize the main steps in the construction of maliciously secure information-
theoretically secure multiparty protocols for NC1 functionalities in the broadcast setting.

• First, we consider delayed-function two round secure MPC protocols for quadratic polynomials in Sec-
tion 3.1.

• Then we define the notion of delayed-function two round secure MPC protocols for two-input NC1

functionalities in Section 3.2. We define the security requirements in Section 3.2.2. This is followed by
a construction of this notion in Section 3.2.3.

• In Section 4, we define the notion of generalized conforming protocols. We state the CLC property
in Definition 12. A construction of generalized conforming protocol satisfying CLC property is pre-
sented in Section 4.1.

• Finally, we present the main construction in Section 5.

It turns out that the protocol realized using the above template satisfies a weaker notion of security called
privacy with knowledge of outputs [IKP10]; in this notion, the ideal world simulator is given the flexibility
to direct the ideal world functionality to send a value, chosen by the simulator, to the honest parties as the
output of the functionality. We present a generic transformation that converts a protocol satisfying privacy
with knowledge of outputs into one that satisfies security with abort. This transformation uses a novel tool
that we introduce, called one-time multi-key message authentication codes (one-time multi-key MACs).

Recall that in a traditional one-time message authentication code, there is a single verifier who can check
the authenticity of the MAC signature using the private MAC key. In the multi-key MAC setting, there are
many verifiers. Each verifier has its own MAC key. We want the following guarantee: suppose a signer signs
a message using the MAC keys of all the verifiers; then each of the verifiers can individually perform the
verification check on the signature using their own MAC key. In particular, the verification can be performed
without any communication between the verifiers. We postpone discussion on the security property until
later.

We now describe our generic transformation: let F be an n-party functionality and suppose our goal
is to construct an n-party protocol Π for F satisfying statistical security with abort property. Π proceeds
by executing an inner protocol Π′ that only satisfies statistical privacy with knowledge of outputs property.
The input to the functionality F ′ associated with Π′ consists of the private inputs of all parties (x1, . . . , xn)
and the one-time multi-key MAC keys of all the parties. The output of F ′ is y = F (x1, . . . , xn) along with
a signature on this value computed using all the keys. After Π′ finishes execution, every party gets y′ along
with a signature. Every party verifies the signature using their own MAC key; if the signature doesn’t verify,
they abort, otherwise they output y′. This concludes the description of Π. Note that the round complexity
of Π′ is the same as the round complexity of Π.

To argue that Π satisfies security with abort, at first it would seem that it just suffices to argue that the
adversary cannot output a signature on a value y′ different from the implicit output y that verifies w.r.t. to
all the keys. Unfortunately, we need a stronger property than this for the following reason: the adversary
could still force a signature on y such that some honest parties accept this but the rest of the parties deem

8

this to be an invalid signature. Recall that all the parties have different MAC keys. If this happens then this
would violate security with abort property. We define the notion of multi-key unforgeability appropriately
to take into account this issue. We conclude by presenting an information-theoretically secure construction
of one-time multi-key message authentication codes in Section 3.3.

Protocol over P2P Channels. Next, we focus on designing a two-round protocol over P2P channels that
achieves security with selective abort against malicious adversaries. Recall that in security with selective
abort, the adversary can selectively decide which of the honest parties can receive the output while the rest
of them abort. However, the adversary cannot force an “invalid” output on any of the honest parties.

To achieve our goal, we start with a two-round protocol Πin over broadcast and P2P channels satisfying
security with (unanimous) abort. A naive attempt would be as follows: start with Πin and whenever a party
has to send a broadcast message, he instead sends this message over P2P channels to all the other parties.
Note that the resulting protocol is over P2P channels. However, this doesn’t work: there is no mechanism
in place to ensure that a malicious party indeed sends the same message, originally a broadcast message in
Πin, to all the other parties over P2P channels. The protocol Πin might not be resilient to such attacks which
would result in our resulting protocol to be insecure.

We introduce mechanisms to prevent this attack. Towards this, our idea is to require each party to send
a garbled circuit of (a slightly modified version of) their second round next message function in Πin in the
second round of the P2P channel protocol. This (modified) next message function has the party’s input and
randomness, and the private channel messages that the party received in the first round of Πin hard-wired
inside its description. It additionally takes the first round broadcast channel messages of Πin as input. To
enable other parties to evaluate this garbled circuit, we require each party to send additive secret shares of
all the labels for its garbled circuit over private channels (in particular, each party only receives one of the
shares for each label) in the first round itself. In the second round, each party simply reveals the appropriate
shares for each garbled circuit based on the messages received in the first round. If the adversary does not
send the same set of broadcast messages to all parties, each party will end up revealing shares corresponding
to a different label. In this case, we rely on the security of garbled circuits to ensure that nobody (including
the adversary) is able to evaluate any of the honest party garbled circuits.

However, there are some subtle issues that crop when implementing this approach:

• Since we want the resulting protocol to satisfy information-theoretic security, we require the next-
message function of Πin to be computable in NC1.

• The transformation sketched above does not handle the case when Πin sends messages over private
channels in the second round.

Fortunately, the information-theoretically secure MPC protocol over broadcast and P2P channels that
we constructed earlier satisfies both the above properties and thus can be used to instantiate Πin in the above
approach. This gives us a P2P channel two-round MPC protocol that achieves security with selective abort
against malicious adversaries. We present the construction of this protocol in section 7.

1.3 Related Work

Since the initial feasibility results [Yao86, GMW87, BOGW88, CCD88], a long sequence of works have
investigated the round complexity of MPC. Here, we focus on protocols in the honest majority setting, and
refer the reader to [BGJ+18] for a survey of related works in the dishonest majority setting.

Information-Theoretic MPC. The seminal works of [BOGW88, CCD88] provided the first constructions
of polynomial-round IT-MPC protocols for general functionalities. These results were further improved upon
in [Bea90, RBO89, Cha90] w.r.t. malicious corruption threshold.

Bar-Ilan and Beaver [BIB89] initiated the study of constant-round IT-MPC protocols. Subsequently,
further improvements were obtained by [FKN94, IK97, CD01]. The work of [IK00] provided the first con-
structions of two and three round IT-MPC protocols against t < n/3 and t < n/2, respectively, semi-honest
corruptions. In the three round setting, their work was extended to handle a constant fraction of malicious

9

adversaries by [GIKR01]. [IK02] constructed constant round perfectly secure protocols, improving upon the
work of [BIB89]. More recently, two round IT-MPC protocols that achieve security with selective abort
against t < n/3 malicious corruptions were constructed by [IKP10] and [IKKP15]. In fact, [IKP10] and
[IKKP15], put together, also achieve the stronger notion of security with guaranteed output delivery for
the specific case of n > 4 parties and t = 1 corruptions which is not covered by the impossibility results
of [FL82, PR18]. All of these positive results are for NC1 functions; [IK04] established the difficulty of
constructing constant-round IT-MPC protocols for general functionalities.

We also highlight the work of [GL05] who provided a general compiler to transform protocols over broad-
cast channels that achieve security with abort into protocols over P2P channels that achieve security with
selective abort. Their transformation is unconditional, and increases the round-complexity by a multiplica-
tive factor of three.

Computationally secure MPC. The study of constant-round computationally secure MPC protocols in
the honest majority setting was initiated by Beaver et al. [BMR90] who constructed such protocols for general
functionalities based on one-way functions. Damg̊ard and Ishai [DI05] provided improved constructions based
on only black-box use of one-way functions.

Two round protocols for general functionalities against t < n/3 malicious corruptions were constructed
by [IKP10] and [IKKP15] based on one-way functions. Very recently, Ananth et al. [ACGJ18] constructed
two round protocols for general functionalities that achieve security with abort against any t < n/2 malicious
corruptions based on black-box use of one-way functions. Applebaum et al. [ABT18] and Garg et al. [GIS18]
also achieve similar results, albeit only against semi-honest adversaries.

2 Preliminaries

We denote the statistical security parameter by k.

2.1 Information-Theoretic MPC

Consider a multiparty computation protocol Π for n parties P1, . . . , Pn associated with an n-party function-
ality F : {0, 1}`1 × · · ·× {0, 1}`n → {0, 1}`′1 × · · ·× {0, 1}`′n , where `i and `′i are the input and output lengths
of the parties respectively.

We are interested in the following security notions.

Malicious Security. Consider a n-party protocol Π. Let P1, . . . , Pn be the set of parties participating in
the protocol. To define the malicious security (also referred to as active security in the literature) of Π, we
first define the ideal process and the real process below.
Ideal Process: This process is defined with respect to a trusted party. A subset of parties can be corrupted
by a PPT ideal process adversary Sim. The process proceeds in the following steps:

1. Input Distribution: The environment distributes the inputs x1, . . . , xn to parties P1, . . . , Pn respec-
tively.

2. Inputs to Trusted Party: The parties now send their inputs to the trusted party. The honest parties
send the same input, it received from the environment, to the trusted party. The adversary, however,
can send a different input to the trusted party.

3. Aborting Adversaries: An adversarial party can then send a message to the trusted party to abort
the execution, at this point the trusted party terminates the execution of ideal process. Otherwise, the
following steps are executed.

4. Trusted party answers party Pi: Suppose the trusted party receives inputs x′1, . . . , x
′
n from

P1, . . . , Pn respectively. It sends the ith output yi, where F (x′1, . . . , x
′
n) = (y1, . . . , yn) to Pi.

10

5. Output: If the honest party Pi is honest, then it outputs yi. The adversarial party Sim outputs its
entire view.

We denote the adversary participating in the above protocol to be Sim. We define IdealSim,F (x1, . . . , xn) to
be the joint distribution defined over the views of the adversary and the outputs of the honest parties.

Security with Selective Abort. For our second result over P2P channels, we consider a weaker notion
of security, call security with selective abort. In security with selective abort, the aborting adversary can
instruct the trusted party to send the output to some honest parties and abort to others. Note that this is
slightly different from the standard notion of security with abort, where the aborting adversary can instruct
the trusted party to either send abort to all the honest parties or send the output to all the honest parties.

Real Process: Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}`i . Party Pi receives the input xi. All the
parties then execute the protocol Π. A subset of parties S is controlled by an adversary A. As in the ideal
process, they receive inputs from the environment. A can deviate arbitrarily from the rules of the protocol.
We call such adversaries malicious adversaries.

We define RealA,F (x1, . . . , xn) to be the joint distribution over the view of the adversary and the outputs
of the honest parties.

Definition 1 (Statistical/Perfect Malicious Security). Consider a n-party functionality F as defined above.
Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}`i . Let Π be a n-party protocol implementing F . We say
that Π is ε-statistically secure against malicious adversaries if for every probabilistic adversary A
controlling a subset of parties S in the real process, there exists a PPT adversary Sim in the ideal process
such that:

IdealSim,F (x1, . . . , xn) ≈s,ε RealA,F (x1, . . . , xn)

If the above two distributions are identical, then we say that Π satisfies perfect security against malicious
adversaries.

Privacy with Knowledge of Outputs Property. Consider an n-party functionality F : {0, 1}`1 × · · · ×
{0, 1}`n → {0, 1}`′1 ×· · ·×{0, 1}`′n . To define privacy with knowledge of outputs property, we first define the
ideal and real world processes defined with respect to an n-party secure computation protocol for F .

- Ideal Processs, IdealSim,F (x1, . . . , xn): The ith party receives as input xi from the environment. Every
party sends x′i to the ideal functionality. If a party is honest then x′i = xi. The parties, controlled by
the simulator Sim, receive F (x1, . . . , xn). The simulator then directs the ideal functionality to either
deliver the actual output F (x1, . . . , xn) to the honest parties or send them values of his choice. The
output of this process comprises of outputs of the honest parties and the view of Sim.

- Real Process, RealA,F (x1, . . . , xn): The ith party receives as input xi from the environment. Execute
the protocol Π. The output of this process comprises of outputs of the honest parties and the view of
A.

Definition 2 (Statistical/Perfect Privacy with Knowledge of Outputs). An n-party computation protocol
securely computing an n-party functionality is said to satisfy perfect privacy with knowledge of outputs prop-
erty of the following holds: for every function A corrupting set S of parties with |S| < n

2 , there exists a PPT
simulator Sim such that the following holds:{

RealA,F (x1, . . . , xn)
}
≈s,ε

{
IdealSim,F (x1, . . . , xn)

}
,

where RealA,F and IdealSim,F are defined above.
If the above distributions are identically distributed then we say that Π satisfies perfect privacy with

knowledge of outputs property.

11

Remark. For our applications we only consider protocols with privacy with knowledge of outputs property
for n−party functionalities of the form F : {0, 1}`1 × . . . × {0, 1}`n → {0, 1}`out where each party has the
same output. Note that in this case, according to the above security definition of privacy with knowledge
of outputs, the adversary can force different outputs on different honest parties. We consider a slightly
stronger variant of this security notion where the correctness of output for the honest parties is still not
guaranteed but the adversary cannot force different outputs on different honest parties. Henceforth (unless
stated otherwise), we use the term “privacy with knowledge of outputs” to refer to this stronger security
notion.

Delayed Function Property. In the context of two-round secure MPC protocols, we define delayed
function property to be one where the functionality, that the parties intend to securely compute, is available
to them only after the first round.

2.2 Garbling Schemes

A garbling scheme [Yao86] consists of the following algorithms:

• Setup, Gen(1k, 1L, 1d): On input statistical security parameter k, number of leaves L of the circuit to
be garbled, depth d of the circuit, it outputs the garbling key gk and input wire labels K.
Note: We parse K as (K0

1 ,K
1
1 , . . . ,K

0
L,K

1
L). For some input x ∈ {0, 1}`, K[x] denotes (K

xξ(1)
1 , . . . ,K

xξ(L)

L),
where ξ : [`]→ [L] is such that xξ(i) is assigned to the ith leaf of the formula.

• Garbling, Garb(gk, C): On input garbling key gk, circuit C, output the garbled circuit GC.

• Evaluation, Eval(GC,K[x]): On input garbled circuit GC, input wire labels K[x] corresponding to x,
output the value y. This is a deterministic algorithm.

We require the following properties from a garbling scheme.

Correctness. Consider a circuit C : {0, 1}` → {0, 1}`′ of L leaves and depth d. We require that
Eval(GC,K[x]) = C(x), where: (i) (gk,K)← Gen(1k, 1L, 1d) and, (ii) GC← Garb(gk, C).

Security. We require that a garbling of C and the input wire labels corresponding to x don’t reveal any
information beyond C(x). We formalize this below.

Definition 3. Let k be the statistical security parameter. A garbling scheme (Gen,Garb,Eval) is said to be
ε(k)-statistical secure if for every circuit C, input x, adversary A, there exists a PPT simulator Sim with
oracle access to A such that the following holds:

{(GC,K[x])} ≈s,ε(k)

{
Sim

(
1k, ϕ(C), C(x)

)}
,

where (i) (gk,K)← Gen(1k, 1L, 1d) and, (ii) GC← Garb(gk, C). Also, ϕ(C) denotes the topology of C.
If the above two distributions are identically distributed then we say that (Gen,Garb,Eval) satisfies perfect

security.

Known Construction(s). Ishai and Kushilevitz [IK02] showed the existence of information-theoretically
secure garbling schemes for circuits and in particular for NC1 circuits, their result yields an efficient (poly-
nomial in circuit size) construction of garbling schemes. We state their result formally below.

Lemma 2.1. [IK02] Consider a depth-d size-s circuit C that takes as input ` bits and outputs `′ bits.
Fix a statistical security parameter k > 0. There is a perfectly secure garbling scheme (Gen,Garb,Eval)

for C such that the following two properties hold:

• Every input wire label is of length at least k.

• Gen,Garb and Eval can each be represented by a O(d)-depth and (k · s)c · 2c·d-sized circuit, for some
constant c > 0.

12

Remark 1. Note that the complexity of Gen upper bounds the size of the input wire labels to be (k · s)c · 2c·d,
for some constant c.

Remark 2. We note that the requirement that the length of the input wire labels to be at least k is required
for our main construction in Section 5. Specifically, we show that our construction is ε-statistically secure,
where ε is negligible in the length of the input wire labels of the garbled circuit and thus, negligible in k.
However, the setting of statistically security parameter is irrelevant for our helper protocols, in Section 3,
which will be proved perfectly secure.

3 Helper Primitives

We consider the following helper primitives towards achieving our main goal:

• First, we consider a two-round secure multiparty computation protocol for NC1 two-input function-
alities; that is, only two of the parties have inputs. We consider this notion in the delayed-function
setting.

• Next, we consider a two-round secure multiparty computation protocol for quadratic polynomials, also
in the delayed function setting.

• Finally, we define a new primitive called one-time multi-key MACs and give an information theoretic
construction for the same.

3.1 Delayed-Function Two-Round Secure MPC for Quadratic Polynomials

A delayed-function two-round secure MPC protocol is a special case of maliciously secure two-round secure
MPC where the functionality is available to the parties only after the first round. One of the helper tools
we use is a two-round secure MPC protocol for quadratic polynomials in the delayed function setting. Such
a result was already shown by Ishai et al. [IKP10]. Formally, they prove the following lemma.

Lemma 3.1 ([IKP10]). Let n > 0 and `out > 0. Consider a n-party functionality G : {0, 1}× · · · × {0, 1} →
Y`out , where Y = {(0, . . . , 0), (1, . . . , 1)}, and every output bit of G is computable by an n-variate quadratic
polynomial over F2. There is a delayed-function two-round MPC protocol for G satisfying statistical privacy
with knowledge of outputs property in the honest majority setting. Moreover, the next message of this protocol
can be represented by a O(log(n))-depth (`out · n)c-sized circuit, for some constant c.

Proof. We now sketch a proof for Lemma 3.1. The two-round protocol given by Ishai et al. in [IKP10]
makes use of a primitive called multiparty conditional disclosure of secrets (MCDS). The following definition
is taken verbatim from [IKP10]:

Definition 4. An MCDS (multiparty CDS) protocol is a protocol amongst n parties, which include three
distinct special parties S,A,B. The sender S holds a secret s, and parties A,B hold inputs a, b (respectively).
The protocol should satisfy the following properties:

• If a = b, and A,B, S are honest, then all honest parties output s.

• If a = b, and A,B are honest, then the adversary’s view is independent of a, even conditioned on s.

• If a 6= b, and A,B, S are honest, then the adversary’s view is independent of s, even conditioned on
a, b.

As usual, the adversary is allowed to be rushing.

13

Ishai et al. [IKP10] give a two-round protocol for this multiparty primitive where only three parties
participate in the protocol (only party S sends a message in the first round), while all n parties may learn
the output. The next message functions of this primitive can be represented by O(1)-depth and O(1)-sized
circuits. We are now ready to give a high level overview of their two-round protocol that achieves privacy
with knowledge of outputs. Let P = {P1, . . . , Pn} be the parties in the protocol and {x1, . . . , xn} be their
respective inputs. The protocol uses a pairwise-verifiable 2 multiplicative (n, t) linear secret sharing scheme
(LSSS) over F2 to share inputs of the parties. Construction of such schemes with the appropriate definitions
can be found in [IKP10]. We describe the protocol for a single output bit.

Round 1 Party Pi proceeds as follows:

• Uses a pairwise-verifiable 2 multiplicative (n, t) linear secret sharing scheme (LSSS) over F2 to compute
shares (si1, . . . , s

i
n) of its input xi and distributes them among other parties. It also computes and

distributes additive shares (zi1, . . . , z
i
n) of 0. This computation can be done using a circuit of size (n)c

and depth O(log(n)).

• Each triple of distinct parties i, j, k ∈ [n] not holding an input xh for each h ∈ [n], participate in the
MCDS protocol playing the roles of S,A,B respectively. Pi computes the first round messages for
MCDS, where its input is an independent randomly chosen mask si,j,k,h. Since it participates in

(
n−1

3

)
parallel executions of MCDS, these computations can be done using a circuit of size nc and depth O(1).

Overall the next message function of this round can be implemented by a circuit of depth O(log(n)) and size
(n)c.

Round 2 Party Pi proceeds as follows:

• It computes yi = G(s1
i , . . . , s

n
i) +

∑n
j−1 z

j
i +

∑
j,k,h si,j,k,h and sends yi to all other parties. This

computation can be done using a circuit of size (n)c and depth O(log(n)).

• It computes second round messages for the
(
n−1

3

)
parallel executions of MCDS. Here a, b are the outputs

of the relevant local computations applied to shares of xh held by Pj , Pk that should ideally be equal.
These computations can be done using a circuit of size nc and depth O(1).

Overall the next message function of this round can also be implemented by a circuit of depth O(log(n))
and size (n)c.

To compute every output bit, we can run multiple executions of this protocol in parallel. This does not
affect the overall depth of the circuit implementing the next message function. However, the overall size of
the next message function now become (`out · n)c.

Remark. The protocol of [IKP10] only guarantees a weaker variant of privacy with knowledge of outputs
where the adversary can force different honest parties to output different values. However if we use a
broadcast channel in the second round, their protocol achieves a stronger variant of privacy with knowledge
of outputs. See Definition 2 for a detailed discussion.

3.2 Delayed-Function Two-round Secure MPC

The other helper tool we require is a delayed-function secure MPC protocol for arbitrary functionalities, but
where only two parties have inputs. In particular, we are interested in the class of functionalities {FG,f}: each
functionality FG,f is parameterized by two functions G, f ; it takes as input (x1, x2,⊥, . . . ,⊥) and outputs
FG,f (x1, x2,⊥, . . . ,⊥) = G(x1, f(x2)). That is, party P1 gets as input x1 and party P2 gets as input x2. If
the functionality FG,f were to be available to the parties before the protocol begins then securely computing
FG,f would reduce to securely computing G since P2 can pre-compute f(x2) and then run the secure protocol
for G. However, we consider delayed-function setting and so this would not work.

In terms of security, we require the following informal guarantees.

14

• Security against P2: unlike the standard simulation-based paradigm, in the ideal world, the honest
parties and the simulator only have oracle access to G. In particular, the simulator only has to extract
the value y (termed as true input of P2), interpreted as the output of f on some input x2 (also called
implicit input of P2), from the adversary.

• Security against P1: we require that the implicit input x2 of P2 is hidden from P1. However, we don’t
enforce that the output f(x2) is hidden from P1. Moreover, we require the input privacy of P2 to hold
even if P1’s behaviour deviates from the protocol.

In particular, we require different security guarantees depending on which party the adversary corrupts.

3.2.1 Two-Input Multiparty Functionalities

We consider delayed-function two-round secure MPC protocols, where the parties determine the functionality
(to be computed on their private inputs) only after the first round. This notion is referred as delayed-function
secure MPC protocols in the literature. We describe the class of functionalities that we are interested in.
Later, we define the security properties associated with delayed-function secure MPC protocols for this class
of functionalities.

Two-Input n-Party Functionalities. A two-input n-party functionality is an n-party functionality where
only two parties receive inputs from the environment.

Definition 5 (Two-Input n-Party Functionality). Let n, `1, `2, `
′ > 0. We define an n-party functionality

G to be a two-input functionality if its of the following form: it takes as input from the domain {0, 1}`1 ×
{0, 1}`2 ×⊥× · · · × ⊥ and outputs a value in {(y, . . . , y)}y∈{0,1}`′ .

We are interested in a sub-class of two-input functionalities that we refer to as specialized two-input
n-party functionalities. Every functionality in this class, on input (x1, x2,⊥, . . . ,⊥), first performs pre-
processing on one of the inputs, say x2, and then performs computation on the preprocessed result and x1.
The reason why we differentiate between pre-processing and post-processing becomes clear later on, when
we define security against adversarial P2.

Definition 6 (Specialized Two-Input n-Party Functionality). Let n, `1, `2, `
′ > 0. We define an n-party

functionality mapping {0, 1}`1×{0, 1}`2×⊥ · · ·×⊥ to {(y, . . . , y)}y∈{0,1}`′ (parameterized by a functions G and

f) to be a specialized two-input functionality if its of the following form: it takes as input (x1, x2,⊥, . . . ,⊥)
and outputs G(x1, f(x2)).

3.2.2 Security

Let P1, . . . , Pn be the parties participating in the delayed-function secure MPC protocol. We consider three
cases and define separate security properties for each of these three cases: (i) P1 is in the corrupted set
while P2 is not, (ii) P2 is in the corrupted set while P1 is not and, (iii) neither P1 nor P2 is in the corrupted
set. Note that we don’t consider the case when P1 and P2 are both in the corrupted set because P1 and P2

are the only parties receiving inputs in the protocol. We note that in all the three cases we are required to
handle adversaries that deviate from the behavior of the protocol.

We define the following set systems.

• S1 =
{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 ∈ T, P2 /∈ T

}
• S2 =

{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 /∈ T, P2 ∈ T

}
• S3 =

{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 /∈ T, P2 /∈ T

}
We now handle the three cases below. Denote S to be the corrupted set of parties. Let x1 and x2 be the
inputs of P1 and P2 respectively.

15

Case 1. S ∈ S1. To define the security property for this case, we consider two experiments Expt0 and Expt1.
In Expt0, the honest parties and the adversary execute the protocol (real world). The output of Expt0 is the
view of the adversary and the outputs of the honest parties.

In Expt1, the corrupted set of parties execute the protocol with the rest of the parties, simulated by a
PPT algorithm Sim. In the first round, the simulator does not get any input and after the first round, the
simulator gets as input f(x2), where FG,f is the n-party functionality associated with the protocol. The
output of Expt1 is the view of the adversary and the output of the simulator.

We require that the output distributions of the experiments Expt0 and Expt1 are identically distributed.

Definition 7 (Security Against S1). Consider a delayed-function n-party protocol Π for a class of specialized
two-input n-party functionalities {FG,f} mapping {0, 1}`1 × {0, 1}`2 ×⊥ · · · ×⊥ to {(y, . . . , y)}y∈{0,1}`′ . We
say that Π is secure against S1 if for every adversary corrupting a set of parties S ∈ S1, there exists a PPT
simulator Sim such that the output distributions of Expt0 and Expt1 are statistically indistinguishable.

Case 2. S ∈ S2. We handle this case using the real world-ideal world paradigm. In the real world, the
corrupted parties and the honest parties execute the protocol. The output of the real world is the view of
the adversary and the outputs of the honest parties. In the ideal world, the honest parties and the simulator
have oracle access to the n-party functionality G 5. The output of the ideal world are the outputs of the
honest parties and the output of the simulator.

More formally, we can define the real world process RealA,F and the ideal world process IdealSim,G as in
Section 2.1 – in particular, as in the definition of privacy with knowledge of outputs property in Section 2.1,
the simulator directs the trusted party to deliver outputs, of its choice, to the honest parties.

We define security of delayed-function secure MPC protocols against S2.

Definition 8 (Security Against S2). Consider a delayed-function n-party protocol Π for a class of specialized
two-input n-party functionalities {FG,f} mapping {0, 1}`1 × {0, 1}`2 ×⊥ · · · ×⊥ to {(y, . . . , y)}y∈{0,1}`′ . We
say that Π is secure against S2 if for every adversary A corrupting a set of parties S ∈ S2, there exists a
PPT simulator Sim such that the output distributions of RealA,F (x1, . . . , xn) and IdealSim,G(x1, . . . , xn) are
statistically indistinguishable.

Remark 3. Since the simulator only has access to the ideal functionality of G (and not F) in the ideal
world, this means that the simulator is required to only extract the implicit input (and not the true input)
of the adversary. In particular, if f is the identity function, then this security notion implies the standard
simulation-based security.

Case 3. S ∈ S3. In this case, we require the protocol to satisfy privacy with knowledge of outputs property

(Definition 2). Formally, we can analogously define the real world process RealA,F and ideal world process
IdealSim,F as in Section 2.1. We define the security property below.

Definition 9 (Security Against S3). Consider a delayed-function n-party protocol Π for a class of specialized
two-input n-party functionalities {FG,f} mapping {0, 1}`1 × {0, 1}`2 ×⊥ · · · ×⊥ to {(y, . . . , y)}y∈{0,1}`′ . We
say that Π is secure against S3 if for every adversary A corrupting a set of parties S ∈ S3, there exists a
PPT simulator Sim such that the output distributions of RealA,F (x1, . . . , xn) and IdealSim,F (x1, . . . , xn) are
identically distributed.

We are now ready to formally define a delayed-function secure MPC protocol for specialized two-input
functionalities.

Definition 10. Consider a delayed-function n-party protocol Π for a specialized two-input n-party function-
ality. We say that Π is secure if Π is secure against S1 (Definition 7), secure against S2 (Definition 8) and
secure against S3 (Definition 9).

5We emphasize that the parties have oracle access to G and not F .

16

3.2.3 Construction

We prove the following lemma.

Lemma 3.2. Let n, `1, `2, `
′ > 0. Consider a two-input n-party functionality G : {0, 1}`1 × {0, 1}`2 × ⊥ ×

· · · ×⊥ → {(y, . . . , y)}y∈{0,1}`′ computable by a depth-d circuit of size s. There is a delayed-input two-round

MPC protocol for a specialized two-input functionality G (Definition 6) satisfying statistical privacy with
knowledge of outputs property in the honest majority setting. Moreover, the next message function of the
every party in the protocol can be represented by a circuit of depth O(d+ log(s)) and size sc2c·(d+log(s)), for
some constant c.

Proof. The main tools used in the construction are a statistical secure garbling scheme and a secure MPC
protocol for quadratic polynomials in the honest majority setting satisfying privacy with knowledge of outputs
property (Lemma 3.1). We denote the garbling scheme by (Gen,Garb,Eval). We denote the secure MPC
protocol for quadratic polynomials by ΠQuad.

We construct a delayed-function secure MPC protocol for a class of specialized two-input functionalities
{FG,f}, each functionality implementable by a circuit of size s and depth d. Our construction is heavily
inspired by the techniques introduced in the work of Benhamouda and Lin [BL18]. Suppose P1 has input
x1, P2 has input x2 and the rest of the parties don’t receive any input. The protocol proceeds as follows:

Round 1.

- P1 generates Gen(1k, 1L
′
, 1d
′
) to obtain (gk1,K

1
I), where L′ and d′ are defined below. It also generates

the first round messages of ΠQuad. In ΠQuad, its input is K1
I . It sends the first round messages of ΠQuad

to other parties.

- P2 generates Gen(1k, 1L
′′
, 1d
′′
) to obtain (gk2,K

2
I), where L′′ and d′′ (defined in first of Round 2). It

also generates the first round messages of ΠQuad. It also generates a random string R (we define its
length below). In ΠQuad, its input is (K2

I ◦ R). It generates Garb(gk2, Ux2
) to obtain GC2, where Ux2

is a universal circuit with x2 hardwired in it, it takes as input a circuit of size s, depth d and outputs
a single bit. Set |R| = |GC2|. Note that Ux2

can be implemented by a circuit of size L′′ = O(s) and
depth d′′ = O(d). It sends GC2 ⊕R along with the first round messages of ΠQuad to other parties.

- Pi, for i 6= 1, i 6= 2, generates the first round messages of ΠQuad. It sends the first round messages to
other parties.

Round 2. At the end of round 1, the parties receive the function f as input.

- P1 generates the second round messages of ΠQuad. The protocol ΠQuad is associated with a function
that takes as input (K1

I ,K
2
I ,⊥, . . . ,⊥) and outputs K1

I

[
K2
I [f] ◦R

]
6. We note that this function can

be implemented by a system of quadratic polynomials over F2. It generates Garb(gk1, Ĝ) to obtain

GC1, where Ĝ (with GC2 ⊕ R hardwired) is defined as follows: it takes as input (K2
I [f], R), computes

y ← Eval(GC2,K
2
I [f]) and finally it outputs G(x1, y). Ĝ can be implemented by a circuit of size

L′ = O(s) and depth d′ = O(d).

P1 sends the second round messages of ΠQuad along with GC1.

- P2 generates the second round messages of ΠQuad and sends them to other parties.

- Pi, for i 6= 1 and i 6= 2, computes the second round messages of ΠQuad and sends them to other parties.

6Recall that the notation K1
I

[
K2

I [f] ◦R
]

refers to the input wire labels for GC1 corresponding to the input (K2
I [f] ◦ R).

Moreover, K2
I [f] refers to the input wire labels for GC2 corresponding to the input f .

17

Reconstruction. All the parties compute the output of ΠQuad to learn the output K1[K2[f]]. They then
evaluate GC1 to obtain G(x1, f(x2))

If any point in time, if one of the parties abort, the rest of the parties abort as well. This completes the
description of the protocol.

Correctness. By the correctness of ΠQuad, the output of ΠQuad is K = K1
I [K

2
I [f] ◦R]; that is the output of

ΠQuad is the input wire labels for GC1 corresponding to the input K2
I [f]. By the correctness of the garbling

scheme, we get the output of Eval(GC2,K
2
I [f]) to be f(x2). Invoking the correctness property of the garbling

scheme once more we get the output of Eval
(
GC1,K

1
I [K

2
I [f] ◦R]

)
to be G(x1, f(x2)).

Efficiency. We first determine the garbling and evaluation complexities of GC1 and GC2.
From Lemma 2.1, the algorithms Gen(1k, 1L

′′
, 1d
′′
), Garb(gk2, Ux2

) and Eval(GC2,K
2
I [x2]) can each be

represented by a O(d)-depth sc12c1d-sized circuit, for some constant c1. Thus, Ĝ can be represented by a
O(d)-depth sc22c2d-sized circuit, for some constant c2. From Lemma 2.1, the algorithms Gen(1k, 1L

′
, 1d
′
),

Garb(gk1, Ĝ) and Eval(GC1,K
1
I [K

2
I [x2] ◦ R]) can each be represented by a O(d)-depth sc32c3d-sized circuit,

for some constant c3.
We calculate the computational complexities of all the parties in the above protocol.

• Computational complexity of P1: to calculate this, it suffices to determine the complexity to garble
GC2, the complexity of evaluating GC2 and the next message function complexity of ΠQuad. We have
already determined the first two. Moreover, from Lemma 3.1, the next message function of ΠQuad can
be represented by a O(log(n))-depth nc4-sized circuit, for some constant c4. Thus, the next message
of P1 can be represented by a depth-O(d+ log(n)) sc2c·d-sized circuit, for some constant c.

• Computational complexity of P2: to calculate this, it suffices to determine the complexity to garble
GC1, the complexity of evaluating GC2 and the next message function complexity of ΠQuad. We have
already determined the first two. As in the above bullet, the next message function of ΠQuad can be
represented by a O(log(n))-depth nc4-sized circuit, for some constant c4. Thus, the next message of
P2 can be represented by a depth-O(d+ log(n)) sc2c·d-sized circuit, for some constant c.

• Computational complexity of the rest of the parties: to calculate this, it suffices to determine the
complexity of evaluating GC2 and the next message function complexity of ΠQuad. We omit this
analysis since this follows from the analysis of the above two bullets. As before, we can represent the
next message function of Pi, for 3 6 i 6 n, by a depth-O(d + log(n)) sc2c·d-sized circuit, for some
constant c.

3.2.4 Proof of Security

We know prove security of our construction. We consider the following cases. Let S be the set of parties
corrupted by the adversary.

P1 ∈ S and P2 /∈ S. The simulator is defined as follows:

• Round 1.

– Simulating on behalf of P2: Execute the simulator of ΠQuad to obtain the first round messages of

ΠQuad. Generate R
$←− {0, 1}|GC2|. Send the first round messages of ΠQuad along with R, intended

for the parties in S, to the adversary.

– Simulating on behalf of parties in S\{P2}: Execute the simulator of ΠQuad to obtain the first
round messages of ΠQuad. Send the first round messages, intended for the parties in S, to the
adversary.

Also, extract the input K1
I of P1 in ΠQuad from the first round messages of ΠQuad.

• Round 2. At the end of Round 1, the simulator receives (f, ŷ) from the environment.

18

– Simulating on behalf of P2: Execute the simulator SimGC of the garbling scheme (Gen,Garb,Eval);

generate
(
ĜC2, K̂2

)
← SimGC(1k, ϕ(Ux2), ŷ), where ϕ(Ux2) is the topology of Ux. Execute the

simulator of ΠQuad
7, with the output of ΠQuad set to be K1

I

[
K̂2
I ◦R⊕ ĜC2

]
, to generate the second

round messages of ΠQuad. Send the second round messages of ΠQuad, intended for the parties in
S, to the adversary.

– Simulating on behalf of parties in S\{P2}: Similar to simulation on behalf of P2, Execute the

simulator of ΠQuad, with the output of ΠQuad set to be K1
I

[
K̂2
I ◦R⊕ ĜC2

]
, to generate the second

round messages of ΠQuad. Send the second round messages of ΠQuad, intended for the parties in
S, to the adversary.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S. Also

receive ĜC1 from P1. Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate

Eval
(
ĜC1, K̂1

I

)
to obtain b̂. Output b̂.

If at any point in time, the adversary aborts, the simulator aborts as well.

We argue that the output distributions of the ideal world and the real world are identical in this case. We
state the hybrids below.

H1: This corresponds to Expt0 (Definition 7).

H2: In this hybrid, the protocol ΠQuad is simulated. We define the following hybrid simulator that proceeds
as follows.

• Round 1.

– Simulating on behalf of P2: Execute the simulator of ΠQuad to obtain the first round messages of
ΠQuad. It generates Gen(1k, 1L

′′
, 1d
′′
) to obtain (gk2,K

2
I). It generates Garb(gk2, Ux2) to obtain

GC2. Generate R
$←− {0, 1}|GC2|. Send the first round messages of ΠQuad intended for the parties

in S along with GC2 ⊕R to the adversary.

– Simulating on behalf of parties in S\{P2}: Execute the simulator of ΠQuad to obtain the first
round messages of ΠQuad. Send the first round messages intended for the parties in S to the
adversary.

Also, extract the input K1
I of P1 in ΠQuad from the first round messages of ΠQuad.

• Round 2.

– Simulating on behalf of P2: Execute the simulator of ΠQuad, with the output of ΠQuad set to be

K1
I

[
K̂2
I [f] ◦R

]
, to generate the second round messages of ΠQuad. Send the second round messages

of ΠQuad intended for the parties in S to the adversary.

– Simulating on behalf of parties in S\{P2}: This is identical to the simulation on behalf of P2.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S. Also

receive ĜC1 from P1. Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate

Eval
(
ĜC1, K̂1

I

)
to obtain b̂. Output b̂.

If at any point in time, the adversary aborts, the simulator aborts as well.

7By the privacy with knowledge of outputs property, the simulator of ΠQuad directs the ideal functionality to deliver outputs
(of its choice) to honest parties. However, the outer simulator (i.e., the simulator of ΠDFunc), which is running the simulator of
ΠQuad as a subroutine, discards these outputs.

19

In particular, for every party not in the set S, the simulator generates the simulated messages of ΠQuad.
From the statistical privacy with knowledge of outputs property of ΠQuad, the output distributions of H1

and H2 are statistically indistinguishable.

H3: This corresponds to Expt1 (Definition 7).
The only difference between H2 and H3 is that the garbled circuit GC2 (computed by P2) in H3 is

simulated whereas the garbled circuit in H2 is honestly generated. Moreover, exactly one wire label of GC2

per input wire is used to simulate the messages of ΠQuad. Thus we can invoke the statistical security of
(Gen,Garb,Eval) and argue that the output distributions of H2 and H3 are statistically indistinguishable.

P2 ∈ S and P1 /∈ S. The simulator is defined as follows:

• Round 1.

– Simulating on behalf of P1: Execute the simulator of ΠQuad to obtain the first round messages.
Send the messages intended for the parties in S to the adversary.

– Simulating on behalf of parties in S\P1: This is identical to the simulation on behalf of P1.

Receive the first round messages of ΠQuad from the adversary. Additionally receive R̂ (masked garbled

circuit) from P2. Extract the input (K̂2
I ◦ R) of P2 from the first round messages of ΠQuad generated

by P2.

• Round 2. At the end of first round, the simulator receives f from the environment. Compute

Eval
(
ĜC2, K̂2

I [f]
)

to obtain ŷ, where ĜC2 = R̂⊕R. Send ŷ to the ideal functionality to receive b̂.

– Simulating on behalf of P1: Execute the simulator SimGC of the garbling scheme (Gen,Garb,Eval);

generate
(
ĜC1, K̂1

I

)
← SimGC(1k, ϕ(Ĝ), b̂). Execute the simulator of ΠQuad, with the output of

ΠQuad set to be K̂1
I , to generate the second round messages of ΠQuad. Send the second round

messages of ΠQuad along with the simulated garbled circuit ĜC1, intended for the parties in S, to
the adversary.

– Simulating on behalf of parties in S\P1: Execute the simulator of ΠQuad, with the output of ΠQuad

set to be K̂1
I , to generate the second round messages of ΠQuad. Send the second round messages

of ΠQuad intended for the parties in S to the adversary.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S.

Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate Eval

(
ĜC1, K̂1

I

)
to

obtain b̂′. Direct the ideal functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.

If any point in time, the adversary aborts, the simulator aborts as well.

Consider the following hybrids.

H1: Execution of the protocol in the real world.

H2: In this hybrid, the messages of ΠQuad are simulated. We define a hybrid simulator that proceeds as
follows:

• Round 1.

– Simulating on behalf of P1: Execute the simulator of ΠQuad to obtain the first round messages.
Send the messages intended for the parties in S to the adversary.

20

– Simulating on behalf of parties in S\P1: This is identical to the simulation on behalf of P2.

Receive the first round messages of ΠQuad from the adversary. Additionally receive R̂ (masked garbled

circuit) from P2. Extract the input (K̂2
I ◦ R) of P2 from the first round messages of ΠQuad generated

by P2.

• Round 2. At the end of first round, the simulator receives f from the environment. Compute

Eval
(
ĜC2, K̂2

I [f]
)

to obtain ŷ. Send ŷ to the ideal functionality to receive b̂.

– Simulating on behalf of P1: Compute Gen(1k, 1L
′
, 1d
′
) to obtain (gk‘,K

1
I). Compute Garb(gk1, Ĝ)

to obtain GC1. Execute the simulator of ΠQuad, with the output of ΠQuad set to be K̂1
I

[
K̂2
I ◦R

]
, to

generate the second round messages of ΠQuad. Send the second round messages of ΠQuad intended
for the parties in S along with the garbled circuit GC1 to the adversary.

– Simulating on behalf of parties in S\P1: Execute the simulator of ΠQuad, with the output of ΠQuad

set to be K̂1
I

[
K̂2
I ◦R

]
, to generate the second round messages of ΠQuad. Send the second round

messages of ΠQuad intended for the parties in S to the adversary.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S.

Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate Eval

(
ĜC1, K̂1

I

)
to

obtain b̂′. Direct the ideal functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.

If any point in time, the adversary aborts, the simulator aborts as well.

The only difference between H1 and H2 is that the messages of ΠQuad are simulated in H2, whereas in H1

they are not. From the statistical privacy with knowledge of outputs property of ΠQuad, it follows that the
output distributions of H1 and H2 are statistically indistinguishable.

H3: This corresponds to the ideal world.
The only difference between H2 and H3 is that the garbled circuit GC1 is simulated in H3, whereas in

H2 it is generated honestly. Moreover, exactly one wire label of GC1 per input wire is used in ΠQuad. Thus,
from the statistical security of (Gen,Garb,Eval) it follows that the output distributions of H2 and H3 are
statistically indistinguishable.

P1 /∈ S and P2 /∈ S. The simulator is defined as follows:

• Round 1.

– Simulating on behalf of P1: Execute the simulator of ΠQuad to generate the first round messages;
send the messages intended for the parties in S to the adversary.

– Simulating on behalf of P2: Execute the simulator of ΠQuad to generate the first round messages;

send the messages intended for the parties in S to the adversary. Also, send a string R
$←−

{0, 1}|GC2|.

– Simulating on behalf of parties in S\{P1, P2}: This is identical to the simulation on behalf of P1.

• Round 2. The simulator receives the value b̂ from the ideal functionality.

– Simulating on behalf of P1: Execute the simulator SimGC of (Gen,Garb,Eval); compute
(
ĜC1, K̂1

)
←

SimGC

(
1k, ϕ(Ĝ), b̂

)
. Execute the simulator of ΠQuad, with the output of ΠQuad set to be K̂1, to

generate the second round messages; send the messages intended for the parties in S to the
adversary.

21

– Simulating on behalf of P2: Execute the simulator of ΠQuad, with the output of ΠQuad set to be

K̂1, to generate the second round messages; send the messages intended for the parties in S to
the adversary.

– Simulating on behalf of parties in S\{P1, P2}: This is identical to the simulation on behalf of P2.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S.

Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate Eval

(
ĜC1, K̂1

I

)
to

obtain b̂′. Direct the ideal functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.

If any point in time, the adversary aborts, the simulator aborts as well.

We describe the hybrids below.

H1: Execution of the protocol in the real world.

H2: In this hybrid, the messages of ΠQuad are simulated. We define a hybrid simulator that proceeds as
follows:

• Round 1.

– Simulating on behalf of P1: Execute the simulator of ΠQuad to generate the first round messages;
send the messages intended for the parties in S to the adversary.

– Simulating on behalf of P2: Execute the simulator of ΠQuad to generate the first round messages of

ΠQuad. Compute Gen(1k, 1L
′′
, 1d
′′
) to obtain (gk2,K

2
I). Generate a random string R

$←− {0, 1}|GC1|.
Compute Garb(gk2, Ux2) to obtain GC2.

Finally, it sends GC2 ⊕ R along with the first round simulated messages of ΠQuad, intended for
parties in S, to the adversary.

– Simulating on behalf of parties in S\{P1, P2}: This is identical to the simulation on behalf of P1.

• Round 2. After the first round, the simulator receives the function f from the environment.

– Simulating on behalf of P1: Compute Gen(1k, 1L
′
, 1d
′
) to obtain (gk1,K

1
I). Compute Garb(gk1, Ĝ)

to obtain GC1. Simulate the second round messages of ΠQuad, with the output of ΠQuad set to be
K1
I

[
K2
I [f]

]
. Send the simulated second round messages of ΠQuad, intended for parties in S, to the

adversary.

– Simulating on behalf of P2: Simulate the second round messages of ΠQuad, with the output of
ΠQuad set to be K1

I

[
K2
I [f]

]
. Send the simulated second round messages of ΠQuad, intended for

parties in S, to the adversary.

– Simulating on behalf of parties in S\{P1, P2}: This is identical to the simulation on behalf of P2.

• Reconstruction. Receive the second round messages of ΠQuad from the corrupted parties in S.

Reconstruct the output K̂1
I from the second round messages of ΠQuad. Evaluate Eval

(
ĜC1, K̂1

I

)
to

obtain b̂′. Direct the ideal functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.

If any point in time, the adversary aborts, the simulator aborts as well.

The only difference between H1 and H2 is that the messages of ΠQuad are simulated. From the statisti-
cal security of ΠQuad, it follows that the output distributions of H1 and H2 are statistically indistinguishable.

22

H3: In this hybrid, the hybrid simulator, defined in H2, instead simulates the garbled circuit GC1. In
particular, the hybrid simulator generates GC1 as follows: it executes the simulator SimGC(ϕ(Ux2), ŷ) to
obtain

(
GC1,K

2
I [f]

)
, where ŷ = f(x2). The rest of the steps of the hybrid simulator are same as before.

The only difference between H2 and H3 is that the garbled circuit GC1 is simulated in H3, whereas in
H2 it is honestly generated. From the statistical security of (Gen,Garb,Eval), the output distributions of H2

and H3 are statistically indistinguishable. Here we crucially use the fact that only one wire label (of GC1)
per input wire is necessary to generate the messages of the protocol.

H4: This corresponds to the ideal world.
The only difference between H3 and H4 is that the masked garbled circuit sent by P2 in the first round

is generated in H3 as R ⊕ GC2, whereas in H3 just R is sent as the first message. Note that R is not used
in generating the other messages; this means that R⊕ GC2 and R are identically distributed even given the
other messages of the protocol. Thus, the output distributions of H3 and H4 are identically distributed.

3.3 Information-Theoretic One-Time Multi-Key MACs

In this section we first formally define this new-primitive called one-time multi-key message authentication
codes (MACs) and then give a construction for the same. As the name suggests, a multi-key MAC scheme is
a multi-key variant of regular unconditional MACs. Each key in this scheme can be sampled independently.
Computing a MAC with respect to a set of keys requires knowledge of all the keys. However, verification
can be done individually w.r.t. each key.

Intuitively for correctness, we want that an honestly computed MAC can be verified w.r.t. each key.
For multi-key unforgeability, we allow the adversary to choose keys {Ki}i∈S for any subset S ⊂ [n] and
receive a valid MAC τ corresponding to the set of {Ki}i∈[n] keys (where the remaining keys {Ki}i∈[n]\S
corresponding to the honest set are sampled independently and honestly) on a message x of its choice. We
say that a multi-key MAC scheme is multi-key unforgeable if the probability that the adversary can output a
different MAC τ∗ 6= τ such that it verifies w.r.t. any key Ki in the honest set, i.e., for i ∈ [n]\S is negligible.
We now define this notion formally.

Definition 11. A multi-key one-time MAC scheme with message spaceM, key-space K and signature space
X for a set of parties P = {P1, . . . , Pn} is a tuple of 3 PPT algorithms Φ := (MK.KeyGen,MK.Sign,MK.Verify).

• K ← MK.KeyGen(1k): The key generation algorithm takes the statistical security parameter as input
and outputs a key K ∈ K.

• τ ← MK.Sign(K1, . . . ,Kn, x): The signing algorithm takes a set of keys K1, . . . ,Kn ∈ Kn, and a
message bit x ∈M as input and outputs a MAC τ ∈ X .

• b ← MK.Verify(K,x, τ): The verification algorithm takes a key K ∈ K, a message bit x ∈ M and a
MAC value τ ∈ X as input and outputs a bit b ∈ {0, 1}.

We say that a multi-key one-time MAC scheme is ε(k)-statistically secure if it satisfies the following prop-
erties:

1. Correctness: The following holds for every x ∈M:

Pr
[
{Ki ← MK.KeyGen(1k)}i∈[n], τ ← MK.Sign(K1, . . . ,Kn, x) | ∀i ∈ [n],MK.Verify(Ki, x, τ) = 1

]
= 1

2. Multi-Key Unforgeability: For any unbounded adversary A, the following holds:

Pr
[
ExptforgeΦ,A (1k, 1n) = 1

]
6 ε(k)

where ExptforgeΦ,A is defined as follows:

23

• The Adversary A chooses a subset S ⊂ [n], a set of keys {Ki}i∈[n]\S and a message x ∈ M and
sends these to the challenger.

• The challenger samples keys {Ki ← MK.KeyGen(1k)}i∈S and computes τ ← MK.Sign(K1, . . . ,Kn, x)
such that for each i ∈ [n], MK.Verify(Ki, x, τ) = 1. It sends τ to the adversary.

• The adversary A returns x∗, τ∗.

• Output 1 if τ 6= τ∗ and ∃i ∈ S such that MK.Verify(Ki, x
∗, τ∗) = 1. Else output 0.

We now construct a statistically secure multi-key MAC scheme for message space M = {0, 1}. The keys in
this scheme comprise of three elements A ∈ Fn, b0 ∈ F, b1 ∈ F, where F is a field of size 2k. Computing a MAC
on a message x ∈ {0, 1} w.r.t. n such keys of the form {(Ki, bi,0, bi,1)}i∈[n] is equivalent to finding a vector
U = τ of size n, such that 〈Ai, U〉 = bi,x for each i ∈ [n]. Verification w.r.t. to any key Ki = (Ai, bi,0, bi,1)
can also be done similarly by checking whether 〈Ai, U〉 = bi,x. We now formally prove the following lemma.

Lemma 3.3. Given a statistical security parameter k > 0, there exists an ε(k)-statistically secure one-time
multi-key MAC scheme Φ := (MK.KeyGen,MK.Sign,MK.Verify) for message space M = {0, 1}.

Proof. We start by describing the construction. Later we give a proof of security for this construction.
Construction. Let F be a field of size exponential in the statistical security parameter k.

• MK.KeyGen(1k): Sample A
$←− Fn and b0, b1

$←− F. Output K = (A, b0, b1).

• MK.Sign(K1, . . . ,Kn, x): ∀i ∈ [n], parse Ki = (Ai, bi,0, bi,1). Let A =

A1

.

.
An

 and Bx =

b1,x
.
.

bn,x

. Sample

a vector U such that A · U = Bx. Output τ = U .

• MK.Verify(Ki, x, τ): Parse Ki = (Ai, bi,0, bi,1) and τ = U . Check whether 〈Ai, U〉 = bi,x. If so output
1, else output 0.

Correctness. Correctness follows trivially from construction. Since U is chosen such that A · U = Bx,
then it holds for each i ∈ [n] that 〈Ai, U〉 = bi,x.

Multi-Key Unforgeability. Given any i ∈ S, Let Ai = [ai,1, . . . , ai,n] and τ = U and τ∗ = U∗. Since
bi,x is chosen uniformly at random, the probability that there exists U∗T = [u∗1 . . . u

∗
n] such that bi,x =

ai,1 · u∗1 + . . .+ ai,n · u∗n is 1/|F|. Therefore,

Pr[MK.Verify(Ki, x, τ
∗) = 1] 6 1/|F|

For MK.Verify(Ki, x, τ
∗) = 1, since τ 6= τ∗, U and U∗ must differ in at least one position. Let u∗j 6= uj . Then

ai,j =
bi,x −

∑
k∈[n]\j ai,k · u∗k
u∗j

Since ai,j is chosen uniformly at random, the probability that this happens is 1/|F|.

Pr[MK.Verify(Ki, x, τ
∗) = 1] 6 1/|F|

Therefore, Pr[MK.Verify(Ki, x
∗, τ∗) = 1] 6 2/|F| for any x∗ ∈ {0, 1}.

Finally, taking a union bound:

Pr [(∃i ∈ S such that MK.Verify(Ki, ·, τ∗) = 1) ∧ (τ 6= τ∗)] 6 2|S|/|F|

24

Note that the above construction can be easily extended to obtain a one-time multi-key MAC scheme for
multi-bit message space M = {0, 1}∗. This can be done by computing a multi-key MAC for each bit of the
message separately using the construction from Lemma 3.3. As a result, we get the following corollary.

Corollary 3.4. Given a statistical security parameter k > 0, there exists an ε(k)-statistically secure one-time
multi-key MAC scheme Φ := (MK.KeyGen,MK.Sign,MK.Verify) for a multi-bit message space M = {0, 1}∗.

4 Generalized Conforming Protocols

The notion of conforming protocols was first defined in [GS18b] as an intermediate tool to construct two-
round secure MPC from two-round oblivious transfer. Their notion as-is is insufficient to achieve our goal of
constructing an information-theoretic multiparty computation protocol secure against malicious adversaries.
To get around this, we define the notion of generalized conforming protocols.

Syntax. An n-party generalized conforming protocol Φ for an n-party functionality F is specified by the

parameters
(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, where n is the number of parties in the system, N denotes the size

of the global state Z, Φi,j is a set of actions and P is a set of (2 ·
(
n
2

)
+ n) partitions of [N]. We denote

P = (S1, . . . , Sn, {Ti1,i2}i1,i2∈[n],i1 6=i2 , U). One can think of Si as the set of locations reserved for private
computation for party Pi, Ti1,i2 as the space allocated to party Pi1 for communicating private messages to
party Pi2 and U as the space allocated for storing broadcast messages of each party. A generalized conforming
protocol proceeds as follows. Let x1, . . . , xn be the respective inputs of all parties.

• Pre-processing Phase. For each i ∈ [n], party Pi defines sti to be the list:

sti :=

Rk : ∀k ∈ Si
⋃
i6=i′

Ti,i′
⋃
i 6=i′

Ti′,i

where ∀k ∈ Si

⋃
i 6=i′ Ti,i′ it samples each bit Rk uniformly at random. Compute an N -sized list Zi,1 as

follows:

– For each k ∈ [N], initialize Zi,1k = 0. Here Zi,1k denotes the kth bit of Zi,1

– Compute
{(zk, k) : k ∈ Li} ← Pre(1k, i, xi, sti)

where Li is a subset of Si
⋃
i 6=i′ Ti,i′ .

– For every k ∈ Li, set the kth location Zi,1k in Zi,1 to have the value zk.

– For each i′ ∈ [n] \ {i}, it sends (Rk : ∀k ∈ Ti,i′) to party Pi′ over private channels.

– It broadcasts Zi,1 to all other parties.

We require that there does not exist k ∈ [N] such that for any i1 6= i2, the set output by Pre(1k, i1, xi1 , sti1)
contains (·, k) and the set output by Pre(1k, i2, xi2 , sti2) also contains (·, k). This means that there is
no location in the global state Z that gets overwritten twice.

At the end of the pre-processing phase, Pi receives (Rk : ∀k ∈ Ti′,i) from all other parties Pi′ (i′ ∈ [n]\i).
It includes this as a part of sti. It retains sti as private information.

• Computation Phase For each i ∈ [n], party Pi sets

Z1 =

n⊕
i−1

Zi,1

For each j ∈ [t+ 1], it proceeds as follows:

25

– Parse the action Φi,j as (LIi,j ,Ci,j ,L
O
i,j).

– If j 6= 1, for {(k, zk)}∀i′ 6=i, k∈LO
i′,j−1

, update kth location in Zi,j with value zk. Call the resulting

state Zj .

– Take as input values in the locations of Zj specified by the set LIi,j along with sti, compute Ci,j

and update the locations in Zj specified by the set LOi,j . Call the resulting state Zi,j+1.

– Send all the updated values and locations {(k, zk)}k∈LOi,j to all other parties.

As before, we require that there is no location in Z, where two parties simultaneously write to this
location in any given round. At the end of all the rounds, the output of the computation for party Pi
is in the last `′i locations of Si.

• Reconstruction. For every i ∈ [n], party Pi unmasks the last `′i locations of Si to learn the output.

In terms of correctness, we require that at the end of the above protocol, the last `′i locations of Si contains
masked (yi), where F (x1, . . . , xn) = (y1, . . . , yn). Since a generalized conforming protocol is a special instance
of a secure multiparty computation protocol, the security notions for generalized conforming protocols can
be defined analogously.

Definition 12 (CLC Property). An n-party generalized conforming protocol, specified by the parameters(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, for an n-party functionality F satisfies CLC property if the following holds:

every Φi,j can be parsed as (LIi,j = LI→i,j ∪ LI←i,j , Ci,j , LOi,j = LO→i,j ∪ LO←i,j). We require that Ci,j, for every
i ∈ [n], j ∈ [t + 1]\{1} (that is, all rounds except the first), is defined as follows: it takes as input values in
the locations of Z specified by the locations LIi,j = LI→i,j ∪ LI←i,j and state sti,

• Copy Operation: For every k ∈ LI→i,j , there exists a unique k′ ∈ LI←i,j ⊂ Si, copy zk ⊕ Rk ⊕ Rk′ to

(k′)th location in Z, where zk is the value in the kth location of Z. Note that Rk, Rk′ are values in the
list sti and hence, LI→i,j ⊂ U

⋃
i′∈[n]\{i} Ti,i′

⋃
i′∈[n]\{i} Ti′,i.

• Local Computation: Take as input a set of values in Z, indexed by a subset of Si, sti, and compute
a polynomial-sized circuit on these values. The output of this computation is written to a subset of
locations, indexed by Si, in Z.

• Copy Operation: For every k′ ∈ LO→i,j ⊂ Si, there exists a unique k ∈ LO←i,j , copy zk′ ⊕Rk ⊕Rk′ to

kth location in Z, where zk is the value in the kth location of Z. As before, Rk, Rk′ are values in the
list sti and hence, LO←i,j ⊂ U

⋃
i′∈[n]\{i} Ti,i′ .

For the first round, we require Ci,1 to be defined as follows: it takes as input Z1, computes a circuit Ĉi,1 on
Z1 to obtain {vk}k∈LOi,1 and finally, it updates the kth location in Zi,2 with the value zk = vk ⊕Rk for every

k ∈ LOi,1.

4.1 Construction

We prove the following lemma.

Lemma 4.1. Let n, `1, `
′
1, . . . , `n, `

′
n > 0. Consider an n-party functionality F : {0, 1}`1 × · · · × {0, 1}`n →

{0, 1}`′1 × · · · × {0, 1}`′n computable by a depth-d circuit of size s. There is a maliciously secure t-round
generalized conforming protcol for F , for some constant t, satisfying CLC property with perfect security in
the honest majority setting. Moreover, the next message function of every party can be implemented by a
circuit of depth O(d+ log(s)) and size sc2c·(d+log(s)), for some constant c.

26

Proof. We start with any deterministic8 MPC protocol Π, that is information theoretically secure against
malicious adversaries and runs in a constant number of rounds t. Let (t + 1)th round correspond to the
output computation phase. Also, the next message functions in Π must be implementable by a circuit of
depth O(d+log(s)) and size sc2c·(d+log(s)). The protocols constructed by [BIB89, IK00] satisfy this property.

We assume without loss of generality that each next message function in Π takes input of maximum
length `in and computes an output of maximum length `out. Since, each party is allowed to send a broadcast
message as well as private messages to every party in each round, we further assume that the output of each
next message function is divided into n + 1 messages of equal length. Each of these conditions can be met
by suitably padding the messages with 0s.

Since such a protocol requires the use of private channels, we add an extra pre-processing phase where
the parties exchange one-time pads (of suitable length) to emulate the private channels over a broadcast
channel in subsequent rounds. In particular, whenever a party Pi has to send a message to another party Pj
, it encrypts its message using the one-time pad Pi had chosen and sent to Pj in the pre-processing phase.
Now we transform such an interactive MPC protocol into a conforming protocol as follows:
|Si| = |xi|+(t+1) ·(`in+`out), where xi is the input of party Pi. |Ti1,i2 | = t ·(`outn+1) and |U | = t ·n ·(`outn+1).

Each of these partitions are arranged in the global state as follows:

Z := S1||T1,2|| . . . ||T1,n|| . . . ||Si||Ti,1|| . . . ||Ti,n|| . . . ||Tn,n−1||U

. Let x1, . . . , xn denote the respective inputs of each party.

• Pre-processing Phase. For each i ∈ [n], party Pi defines sti to be the list:

sti :=

Rk : ∀k ∈ Si
⋃
i 6=i′

Ti,i′
⋃
i6=i′

Ti′,i

where ∀k ∈ Si

⋃
i 6=i′ Ti,i′ it samples each bit Rk uniformly at random. Compute an N -sized list Zi,1 as

follows:

– For each k ∈ [N], initialize Zi,1k = 0. Here Zi,1k denotes the kth bit of Zi,1

– Let Si[h] denote the hth location in Si and Si[0 : h] denote the first h locations in set Si. Set
zSi[0:|xi|] = xi ⊕ (RSi[0]|| . . . ||RSi[|xi−1|]). Compute

Pre(1k, i, xi, sti) = {(zk, k) : k ∈ Si[0 : |xi|]}

where Li is a subset of Si
⋃
i 6=i′ Ti,i′ .

– For every k ∈ Li, set the kth location Zi,1k in Zi,1 to have the value zk.

– For each i′ ∈ [n] \ {i}, it sends (Rk : ∀k ∈ Ti,i′) to party Pi′ over private channels.

– It broadcasts Zi,1 to all other parties.

We require that there does not exist k ∈ [N] such that for any i1 6= i2, the set output by Pre(1k, i1, xi1 , sti1)
contains (·, k) and the set output by Pre(1k, i2, xi2 , sti2) also contains (·, k). This means that there is
no location in the global state Z that gets overwritten twice.

At the end of the pre-processing phase, Pi receives (Rk : ∀k ∈ Ti′,i) from all other parties Pi′ (i′ ∈ [n]\i).
It includes this as a part of sti. It retains sti as private information.

• Computation Phase For each i ∈ [n], party Pi sets

Z1 =

n⊕
i−1

Zi,1

It proceeds as follows:

8Randomized protocols can be viewed as deterministic protocols where the randomness used by a party is a part of its input.

27

– Parse the action Φi,1 as (LIi,1,Ci,1,L
O
i,1).

– LIi,1 = Si[0 : |xi|]

– Compute xi = zSi[0:|xi|] ⊕ (RSi[0]|| . . . ||RSi[|xi−1|]) using sti and Z1

– Compute Πi,1 ← NMFi,1(1k, xi), where NMFi,1(.) = Ĉi,1 is the first round next message function
of Pi. Let Πi,1 = Πi→1

i,1 || . . . ||Πi→n
i,1 ||ΠB

i,1.

– It encrypts Πi→i
i,1 , using the appropriate random bits from sti and updates the appropriate loca-

tions LOi,1 ⊂ Si in Z1 with these encrypted values. Note that these will be next `out
n+1 locations is

Si after |xi|.
– For i′ 6= i, it encrypts Πi→i′

i,1 , using the appropriate random bits from sti and updates the appro-

priate locations LOi,1 ⊂ Ti,i′ in Z1 with these encrypted values. Note that these will be the first
`out
n+1 locations in Ti,i′ .

– It also updates the next `out
n+1 vacant locations in U specified by LOi,1 with ΠB

i,1.

– Call the resulting state Zi,j+1 and send all the updated values and locations {(k, zk)}k∈LOi,j to all

other parties.

For each j ∈ [t+ 1] \ {1}, party Pi proceeds as follows:

– Parse Φi,j as (LIi,j = LI→i,j ∪ LI←i,j , Ci,j , LOi,j = LO→i,j ∪ LO←i,j).

– LI→i,j consists of all those location in U
⋃
i′∈[n]\{i} Ti,i′

⋃
i′∈[n]\{i} Ti′,i where the masked input to

NMFi,j is stored.

– Copy Operation. Each party Pi firsts updates the kth location in Zi,j [copy1] with the value zk
where {(k, zk)}∀i′ 6=i,k∈LO←

i′,j−1
(if j = 2, LO←i′,j−1 = LOi′,j−1) are the values received from other parties

in the previous step. The resulting state is called Zj [copy1]. The first copy operation corresponds
to unmasking these messages, re-masking them with the appropriate random bits from sti and
copying them to the locations specified by LI←i,j ⊂ Si. Each party Pi sends the updated locations
values and locations {(k, vk)}k∈LI←i,j to all other parties. Now that all the required inputs to

NMFi,j are stored in the private computation space of Pi, we are ready to proceed with the local
operation.

– Local Operation. Each party Pi firsts updates the kth location in Zi,j [local] with the value
zk where {(k, zk)}∀i′ 6=i,k∈LI←

i′,j
are the values received from other parties in the previous step. The

resulting state is called Zj [local]. Local computation essentially corresponds to computing NMFi,j
using the unmasked values stored in Si. This operation takes the appropriate masked values in
Si and sti as input. The output of this computation is masked using the appropriate random
bits from sti and stored in the next `out vacant positions in Si. Each party Pi sends the updated
locations values and locations {(k, vk)}k∈Si to all other parties.

– Copy Operation. Each party Pi firsts updates the kth location in Zi,j [copy2] with the value
zk where {(k, zk)}∀i′ 6=i,k∈Si′ are the values received from other parties in the previous step. The
resulting state is called Zj [copy2]. The second copy operation corresponds to unmasking the values
specified by LO→i,j ⊂ Si, re-masking them using the appropriate random bits from sti and copying

them to the locations specified by LO←i,j . Each party Pi sends the updated locations values and
locations {(k, vk)}k∈LO←i,j to all other parties. Sending the broadcast and private channel messages

to other parties in each round is captured by this operation.

At the end of all the rounds, the output of the computation for party Pi is in the last `′i locations of
Si.

• Reconstruction Phase. Each party unmasks the last `′i values in Si to learn the output.

28

We need to argue that Φ preserves the correctness and security guarantees of Π. Note that Φ is essentially
the same as Π with the only difference being that there is an additional pre-processing phase in Φ and all the
remaining private channel messages are sent over a broadcast channel. Each round in Π, corresponds to 3
operations/rounds in Φ - one for decrypting private messages sent over a broadcast channel, the second one
for computing the next message function and the third one for encrypting private messages before sending
them over a broadcast channel. This does not affect the correctness guarantees of Π. Also, each of these
private messages are suitably encrypted using masks sampled uniformly at random in the pre-processing
phase. This ensures that the security properties of Π also remain intact. We should point out that the way
the first copy operation is defined, some bits might get copied multiple times by the same party. However
this redundancy does not affect the overall asymptotic complexity of our protocol.

5 Two-round MPC over Broadcast and P2P: Security with Abort

In this section, we show how to construct a two-round MPC in the honest majority setting and satisfying
statistical malicious security.

Lemma 5.1. Let n, `1, . . . , `n, `out > 0. Consider an n-party single-output functionality F : {0, 1}`1 × · · · ×
{0, 1}`n → {0, 1}`out computable by a depth-d circuit of size s.

Fix a statistical security parameter k > 0. There is a maliciously secure two-round MPC protocol for F
with negl(k)-statistical security with abort in the honest majority setting, for some negligible function negl.
Moreover, the computational complexity of this protocol is polynomial in s and exponential in d.

Looking ahead, we first give a construction for a two-round secure MPC protocol for F that achieves
negl(k)-statistical privacy with knowledge of outputs in Section 5.1. Later in Section 5.2, we use a multi-key
MAC scheme to transform this protocol into one that achieves negl(k)-statistical security with abort.

5.1 A Two-round Secure MPC Satisfying Privacy with Knowledge of Outputs

We now construct a two-round MPC protocol that achieves statistical privacy with knowledge of outputs.

Lemma 5.2. Let n, `1, . . . , `n, `out > 0. Consider an n-party single-output functionality F : {0, 1}`1 × · · · ×
{0, 1}`n → {0, 1}`out computable by a depth-d circuit of size s.

There is a maliciously secure two-round MPC protocol for F with statistical privacy with knowledge of
outputs in the honest majority setting. Moreover, the computational complexity of this protocol is polynomial
in s and exponential in d.

5.1.1 Construction.

We begin by describing the tools required for our construction.

Tools. We use the following ingredients in our construction.

• t-round Generalized Conforming protocol for F , guaranteed by Lemma 4.1. Denote this by ΠGConf .

Let ΠGConf be parameterized by
(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
.

• Delayed-function two-round secure n-party MPC for quadratic polynomials, as guaranteed by Lemma 3.1.

• Delayed-function two-round secure n-party MPC for specialized two-input functionalities, as guaran-
teed by Lemma 3.2.

• Information-theoretic garbling scheme (Gen,Garb,Eval) from Definition 2.2.

29

The construction proceeds as follows:
Round 1.

• Generation of Initial Global State: For every i ∈ [n], the ith party computes the pre-processing
phase of ΠGConf . In particular it does the following: it defines

sti := (Rk : ∀k ∈ Si
⋃
i 6=i′

Ti,i′
⋃
i6=i′

Ti′,i)

where ∀k ∈ Si
⋃
i6=i′ , it samples the bit Rk uniformly at random. It computes Pre(1k, i, xi, sti) to obtain

the set {(zk, k) : k ∈ Li}. It computes a N -sized list Zi,1 as follows: initialize Zi,1 to consist of only
zeroes. It sets the kth location in Zi,1 to have the value zk. Broadcast Zi,1 and sends (Rk : ∀k ∈ Ti,i′)
to party Pi′ for each i′ ∈ [n] \ i over a private channel.

• Generation of Garbling Wire Labels: (gki,1,Ki,1) ← Gen(1k, 1L, 1d), where L is the number of
leaves and d is the depth of the formula in Figure 1.

• For every j ∈ [t+ 1]\{1}, the ith party computes the following:

- (gki,j [copy1],Ki,j [copy1]) ← Gen(1k, 1L, 1d), where L is the number of leaves and d is the depth
of the formula in Figure 2.

- (gki,j [local],Ki,j [local]) ← Gen(1k, 1L, 1d), where L is the number of leaves and d is the depth of
the formula in Figure 3.

- (gki,j [copy2],Ki,j [copy2]) ← Gen(1k, 1L, 1d), where L is the number of leaves and d is the depth
of the formula in Figure 4.

• First Round Messages of Delayed-Function MPC for Quadratic Polynomials: All the parties
participate in O(n3t) executions of delayed-function two-round secure n-party MPC for quadratic
polynomials, as guaranteed by Lemma 3.1. Each of these instantiations are denoted as follows:

– For every i1, i2 ∈ [n] and i1 6= i2, the input of the ith party in ΠQuad[i1, i2, 1, 1] is the following:

∗ If i = i1 then the ith party inputs {vk}k∈LOi1,1 , {Rk}kLOi1,1
9, where {vk}k∈LOi1,1 is the output

of circuit Ĉi1,1
10 on Z1, as defined in the definition 12.

∗ If i = i2 then the ith party inputs Ki2,2[copy1] .

∗ If i 6= i1, i 6= i2 then the ith party doesn’t have any input.

Denote ΠQuad[i1, i2, 1, 1].msg1,i4→i5 to be the first round message of ΠQuad[i1, i2, 1, 1] sent by the

(i4)th party to the (i5)th party. We don’t require that i4 or i5 be distinct from i1, i2. We define
similar notation for the other ΠQuad instantiations.

– {ΠQuad[i1, i2, i3, j, 1]}i1,i3∈[n],i1 6=i3,i2∈[n+1] j∈[t+1]\{1}

For i1, i3 ∈ [n], i1 6= i3, i2 ∈ [n+1], j ∈ [t+1]\{1}, the input of the ith party in ΠQuad[i1, i2, i3, j, 1]
is the following:

∗ If i = i1, then the ith party inputs {Rk}k∈Si1
∗ If i = i1 = i2, then the ith party additionally inputs {{Rk′}k∈Ti1,i′}i′∈[n]\{1}.

9Recall that LO
i1,1

consists of a subset of locations in Si1 ,
⋃

i′∈[n]\{i1} Ti1,i′ and U and the locations in U are not a part of

sti1 . But since Rk is not a part of sti′ for any k ∈ U and i′ ∈ [n]. Hence this is equivalent to every party setting Rk = 0 for
all k ∈ U .

10Note that the only values from Z1 that Ĉi1,1 computes on are known to Pi1 in the first round itself. Hence even if it does
not know the entire value of Z1 in the first round, values {vk}k∈LOi1,1

can still be computed.

30

∗ If i = i2 6= i1, then the ith party inputs {Rk′}k′∈Ti2,i1 .
If i2 = n + 1, then party Pi2 has no input. This corresponds to the copy operations from
locations in U to locations in Si1 .

∗ If i = i3 then the ith party inputs Ki3,j [local]

∗ If i 6= i1, i 6= i2, i 6= i3 then the ith party doesn’t have any input.

– {ΠQuad[i1, i2, j, 2]}i1,i2∈[n],i1 6=i2, j∈[t]\{1}

For i1, i2 ∈ [n], i1 6= i2, j ∈ [t] \ {1}, the input of the ith party in ΠQuad[i1, i2, j, 1] is the following:

∗ If i = i1, then the ith party inputs {Rk′}k′∈Si1 , {Rk}k∈U ⋃
i′∈[n]\{i1}

Ti1,i′

∗ If i = i2 then the ith party inputs Ki2,j+1[copy1]

∗ If i 6= i1, i 6= i2 then the ith party doesn’t have any input.

The functionalities associated with each of these protocols are determined in the second round.

• First Round Messages of Delayed-Function MPC for Two-Input Functionalities: All the
parties participate in O(n2t) executions of delayed-function two-round secure n-party MPC, as guar-
anteed by Lemma 3.2. Denote these instantiations to be {ΠDFunc[i1, i2, j]}i1,i2∈[n],j∈[t+1]\{1}. For every

i1, i2 ∈ [n] and i1 6= i2, j ∈ [t+ 1] \ {1}, the input of ith party in ΠDFunc[i1, i2, j] is the following:

– If i = i1 then the ith party inputs Ki1,j [copy2].

– If i = i2 then the ith party inputs {Rk}k∈Si2 .

– If i 6= i1, i 6= i2 then the ith party doesn’t have any input.

Denote ΠDFunc[i1, i2, j].msg1,i→i′′ to be the first message of ΠDFunc[i1, i2, j] sent by the ith party to

(i′′)th party.

Round 2.

• Compute Joint Global State: All the parties compute Z1 =
⊕n

i=1 Zi,1.

• Updates Private State: It updates sti to include (Rk : ∀k ∈ Ti′,i) received from party Pi′(∀i′ ∈ [n]\i)
in the first round.

• Generate Input Wire Labels for First Garbled Circuit: The ith party computes (GCi,1,Ki,1)←
Garb(gki,1, Ci,1), where Ci,1 is defined in Figure 1. Let Ki,1

[
Z1
]

be the set of wire keys corresponding
to the input Z1.

• Generate Garbled Circuits for every round of Generalized Conforming Protocol: For every
j ∈ [t+ 1]\{1}, the ith party computes:

– (GCi,j [copy1],Ki,j [copy1]) ← Garb(gki,j [copy1], Ci,j [copy1]), where Ci,j [copy1] is defined in Fig-
ure 2.

– (GCi,j [local],Ki,j [local])← Garb(gki,j [local], Ci,j [local]), where Ci,j [local] is defined in Figure 3.

– (GCi,j [copy2],Ki,j [copy2]) ← Garb(gki,j [copy2], Ci,j [copy2]), where Ci,j [copy2] is defined in Fig-
ure 4.

• The ith party broadcasts the following message:(
GCi,1, Ki,1

[
Z1
]
, {GCi,j [copy1],GCi,j [local],GCi,j [copy2]}j∈[t+1]

)
Evaluation. To compute the output of the protocol, each party Pi does the following:

31

• For each i′ ∈ [n], let Ki′,1[Z1] be the labels received from party Pi′ at the end of round 2.

• Obtain For each i′ ∈ [n], compute Eval(GCi′,1,Ki′,1[Z1]) to obtain labels in Ki′,2[copy1] correspond-

ing to Zi
′,2[copy1] and second round messages {ΠQuad[i1, i2, 1, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 . Use

these second round messages to reconstruct the remaining labels in Ki′,2[copy1] corresponding to
{(k, zk)}∀i′′ 6=i′, k∈LOi,1 .

• For each j from 2 to (t+ 1) do the following:

– For each i′ ∈ [n], compute Eval(GCi′,j [copy1],Ki′,j [copy1][Zi
′,j [copy1]|| {(k, zk)}∀i′′ 6=i′, k∈LO←

i′′,j−1
])

(if j = 2,LO←i′′,j−1 = LOi′′,j−1) to obtain labels in Ki′,j [local] corresponding to Zi
′,j [local] and second

round messages
{ΠQuad[i1, i2, i3, j, 1].msg2,i′→i′′}i1,i3,i′,i′′∈[n],i1 6=i3,i2∈[n+1].

– Use these second round messages to reconstruct the remaining labels in Ki′,j [local] corresponding
to {(k, zk)}∀i′′ 6=i′, k∈LI←

i′′,j
.

– For each i′ ∈ [n], compute Eval(GCi′,j [local],Ki′,j [local][Z
i′,j [local]|| {(k, zk)}∀i′′ 6=i′, k∈LI←

i′′,j
]) to

obtain labels in Ki′,j [copy2] corresponding to Zi
′,j [copy2] and second round messages

{ΠDFunc[i1, i2, j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 .

– Use these second round messages to reconstruct the remaining labels in Ki,j [copy2] corresponding
to {(k, zk)}∀i′′ 6=i′, k∈Si′′ .

– For each i′ ∈ [n], if (j 6= t + 1), compute Eval(GCi′,j [copy2],Ki′,j [copy2][Zi
′,j [copy2]|| {(k, zk)}

∀i′′ 6=i′, k∈Si′′]) to obtain labels in Ki′,j+1[copy1] corresponding to Zi
′,j+1[copy1] and second round

messages {ΠQuad[i1, i2j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 .

– Use these second round messages to reconstruct the remaining labels in Ki′,j [local] corresponding
to {(k, zk)}∀i′′ 6=i′, k∈LO←

i′′,j−1
.

– If j = t+ 1 compute Eval(GCi′,j [copy2],Ki′,j [copy2][Zi
′,j [copy2]|| {(k, zk)}∀i′′ 6=i′, k∈Si′′]) to obtain

Zfin.

• Use sti to unmask the last `out locations of Si in Zfin to compute the output.

32

Input: Z1

Hardwired Values: action Φi,1 = (LIi,1,Ci,1,L
O
i,1), state sti, wire labels Ki,2[copy1]

• Parse Φi,1 = (LIi,1,Ci,1,L
O
i,1)

• Compute Ĉi,1, where Ĉi,1 is the circuit associated with Ci,1 (see Definition 12), on the values
in Z1 indexed by LIi,1 along with sti. The output of the computation is written to locations

in Z1 indexed by LOi,1. Call the resulting state Zi,2[copy1].

• The input to Ci,2[copy1] is of the form
(
Zi,2[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,1

)
. Thus, the wire

labels Ki,2[copy1] can be divided into two parts: the first part corresponds to Zi,2[copy1] and
the second part corresponds to {(k, zk)}∀i′ 6=i, k∈LO

i′,1
.

• For every i1, i2 with i1 6= i2, compute the second round messages of ΠQuad[i1, i2, 1, 1]. The
n-party functionality associated with ΠQuad[i1, i2, 1, 1] is Qi1,i2,1,1, defined below.

The (i1)th party has input {vk}k∈LOi,1 , {Rk}k∈Si⋃i′∈[n]\{i1}
Ti1,i′

, the (i2)th party

has input Ki2,2[copy1], the rest of the parties don’t have any input and the output
of this function are the labels in Ki2,2[copy1] corresponding to {(k,Rk ⊕ vk)}, for
every location k ∈ LOi1,1; recall that LOi1,1 is the set of the locations written to at
the end of first round in the conforming protocol.

Output the second round messages of all these protocols. Also, output the labels in
Ki,2[copy1] with respect to updated state Zi,2[copy1].

Figure 1: Description of Ci,1

Correctness. Recall that at the beginning of each round j of the computation phase in the generalized
conforming protocol, each party reconstructs the global invariant state Zj before proceeding with its next
action Φi,j . Each Φi,j , for j ∈ [t+ 1] \ 1 is further subdivided into three operations: copy1, local and copy2.
The parties exchange updated information at the end of each of these operations and each party is able to
re-construct the following global invariants:

• Zj [copy1] = Zj at the beginning of the first copy operation in round j.

• Zj [local] at the beginning of the local operation in round j.

• Zj [copy2] at the beginning of the second copy operation in round j.

In order to ensure correctness of our two-round protocol, we want to ensure that these global invariant
states are maintained at every step. Since we are restricted with two-rounds, we implement each of these
actions Φi,j using a series of garbled circuits that can “talk” to each other. Corresponding to each round
j ∈ [t + 1] \ 1 of the computation phase, each party Pi computes and broadcasts three garbled circuits.
Each of these garbled circuits are responsible for performing its assigned operation (copy1, local or copy2)
on the global invariant state and provide labels corresponding to this updated state for its next garbled
circuit. Information about these updated locations must also be communicated to the next round garbled
circuit of all other parties. To enable this we make use of a two-round delayed function MPC for quadratic
functionalities from lemma 3.1 and a two-round delayed function MPC for two-input functionalities from
lemma 3.2.

We argue correctness using the following claims.

33

Input:
(
Zi,j [copy1], {(k, zk)}∀i′ 6=i, k∈LO←

i′,j−1

)
(If j = 2, then LO←i′,1 = LOi′,1)

Hardwired Values: action Φi,j = (LIi,j ,Ci,j ,L
O
i,j), state sti, wire labels Ki,j [local].

• For every i′ 6= i, every k ∈ LOi′,j−1, update the kth location in Zi,j [copy1] with the value zk.

Call the resulting state Zj [copy1].

• Compute the first copy operation of Φi,j on the global state Zj [copy1]. Call the resulting
state Zi,j [local].

• The input to Ci,j [local] is of the form
(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
Thus, the wire labels

Ki,j [local] can be divided into two parts: the first part corresponds to Zi,j [local] and the
second part corresponds to {(k, zk)}∀i′ 6=i, k∈LI←

i′,j
.

• For every i1, i3 ∈ [n] with i1 6= i3 and i2 ∈ [n + 1], compute the second round mes-
sages of ΠQuad[i1, i2, i3, j, 1]. The n-party functionality associated with ΠQuad[i1, i2, i3, j, 1]
is Qi1,i2,i3,j,1, defined below.

The (i1)th party has input {Rk′}k′∈Si1 , the (i2)th party has input {Rk}k∈Ti2,i1
(if i1 = i2,, the ith1 party additionally has input {{Rk}k∈Ti1,i′}i′∈[n]\{i1} and if

i2 = n + 1, the (i2)th party has no input), the (i3)th party has input Ki3,j [local],
the rest of the parties don’t have any input and the output of this function are
the labels in Ki3,j [local] corresponding to {(k′, Rk′ ⊕Rk ⊕ zk)}, for every location
k ∈ LI→i1,j and k′ ∈ LI←i1,j such that k′ is the unique location associated with k as
guaranteed by Definition 12.

Output the second round messages of all these protocols. Also, output the labels in Ki,j [local]
with respect to updated state Zi,j [local].

Figure 2: Description of Ci,j [copy1], for j > 1.

Claim 1. For each i ∈ [n], GCi,1 has access to the global invariant state Z1.

Proof. At the beginning of round 2, all parties compute Z1 =
⊕n

i=1 Zi,1. As described in Fig 1, the circuit
Ci,1 takes this global invariant state Z1 as input. Party Pi sends the wire keys Ki,1[Z1] corresponding to Z1

along with garbled circuit GCi,1. Hence GCi,1 has access to the global invariant state Z1.

Claim 2. For each i ∈ [n], GCi,2[copy1] has access to the global invariant state Z2[copy1] = Z2.

Proof. As described in Fig 2, the input to Ci,2[copy1] is of the form
(
Zi,2[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,1

)
.

Wire labels corresponding to Zi,2[copy1] are output by the garbled circuit GCi,1. For every i1 ∈ [n] \ {i},
each garbled circuit GCi′,1 for i′ ∈ [n], outputs second round messages for ΠQuad[i1, i, 1, 1] that outputs labels
in Ki,2[copy1] corresponding to {(k, zk)} for every location k ∈ LOi1,1 that is updated by i1 ∈ [n] \ {i} in the
first round of the computation phase in the generalized conforming protocol.

On evaluating {GCi′,1}i′∈[n], we can first compute the output for these executions of ΠQuad to compute
wire labels corresponding to {(k, zk)}∀i′ 6=i, k∈LO

i′,1
and then use these to evaluate garbled circuit GCi,2[copy1].

GCi,2[copy1] first computes Z2 = Z2[copy1] using input
(
Zi,2[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,1

)
and then pro-

ceeds with the first copy operation for j = 2.

Claim 3. For each i ∈ [n], j ∈ [t+1]\1, GCi,j [copy1] has access to the global invariant state Zj [copy1] = Zj.

34

Input:
(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
Hardwired Values: action Φi,j = (LIi,j ,Ci,j ,L

O
i,j), state sti, wire labels Ki,j [copy2].

• For every i′ 6= i, for every k ∈ LI←i′,j , update the kth location in Zi
′,j [local] with the value zk.

Call the resulting state Zj [local].

• Compute the local operation of Φi,j on the global state Zj [local]. Call the resulting state
Zi,j [copy2].

• The input to Ci,j [copy2] is of the form
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
. Thus, the wire

labels Ki,j [copy2] can be divided into two parts: the first part corresponding to Zi,j [copy2]
and the second part corresponding to {(k, zk)}∀i′ 6=i, k∈Si′ .

• For every i1, i2 with i1 6= i2, compute the second round messages of ΠDFunc[i1, i2, j]. The
n-party functionality associated with ΠDFunc[i1, i2, j] is DFi1,i2,j , defined below.

The ith1 party has the input Ki1,j [copy2], the ith2 party has the input {Rk}k∈Si2 , the
rest of the parties don’t have any input and the output of the function is computed
as follows: compute the local operation of Φi2,j on the global state Zj [local] and
the output of the function are the labels in Ki1,j [copy2] corresponding to {(k, zk)},
for every location k ∈ Si2 .

Output the second round messages of all these protocols. Also, output the labels in
Ki,j [copy2] with respect to updated state Zi,j [copy2].

Figure 3: Description of Ci,j [local], for j > 1.

Proof. As described in Fig 2, the input to Ci,j [copy1] is of the form
(
Zi,j [copy1], {(k, zk)}∀i′ 6=i, k∈LO←

i′,j−1

)
.

Wire labels corresponding to Zi,j [copy1] are output by the garbled circuit GCi,j−1[copy2]. For every i1 ∈
[n]\{i}, each garbled circuit GCi′,j−1[copy2] for i′ ∈ [n], outputs second round messages for ΠQuad[i1, i, j−1, 1]
that outputs labels in Ki,j [copy1] corresponding to {(k, zk)} for every location k ∈ LO←i1,j−1 that is updated by

i1 ∈ [n] \ {i} in the second copy operation of the (j− 1)th round of the computation phase in the generalized
conforming protocol.

On evaluating {GCi′,j−1[copy2]}i′∈[n], we can first compute the output for these executions of ΠQuad to
compute wire labels corresponding to {(k, zk)}∀i′ 6=i, k∈LO←

i′,j−1
and then use these to evaluate garbled circuit

GCi,j [copy1]. GCi,j [copy1] first computes Zj = Zj [copy1] using input
(
Zi,j [copy1], {(k, zk)}∀i′ 6=i, k∈LO←

i′,j−1

)
and then proceeds with the first copy operation for round j.

Claim 4. For each i ∈ [n], j ∈ [t+ 1] \ 1, GCi,j [local] has access to the global invariant state Zj [local].

Proof. As described in Fig 3, the input to Ci,j [local] is of the form
(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
. Wire

labels corresponding to Zi,j [local] are output by the garbled circuit GCi,j [copy1]. For every i1 ∈ [n] \ {i},
i2 ∈ [n+1] each garbled circuit GCi′,j [copy1] for i′ ∈ [n], outputs second round messages for ΠQuad[i1, i2, i, j, 1]
that output labels in Ki,j [local] corresponding to {(k, zk)} for every location k ∈ LI→i1,j that is updated by

i1 ∈ [n] \ {i} in the first copy operation of the (j)th round of the computation phase in the generalized
conforming protocol.

On evaluating {GCi′,j [copy1]}i′∈[n], we can first compute the output for these executions of ΠQuad to
compute wire labels corresponding to {(k, zk)}∀i′ 6=i, k∈LI←

i′,j
and then use these to evaluate garbled circuit

35

Input:
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
Hardwired Values: action Φi,j = (LIi,j ,Ci,j ,L

O
i,j), state sti, wire labels Ki+1,j [copy1].

• For every i′ 6= i, for every k ∈ Si′ , update the kth location in Zi
′,j [copy2] with the value vk.

If j 6= t+ 1, call the resulting state Zj [copy2], otherwise call the resulting state Zfin.

• If j = t+ 1, output Zfin, else continue to next step.

• Compute the second copy operation of Φi,j on the global state Zj [copy2]. Call the resulting
state Zi,j+1[copy1].

• The input to Ci,j+1[copy1] is of the form
(
Zi,j+1[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,j←

)
. Thus, the

wire labels Ki,j+1[copy1] can be divided into two parts: the first part corresponding to
Zi,j+1[copy1] and the second part corresponding to {(k, zk)}∀i′ 6=i,LO

i′,j←
.

• For every i1, i2 with i1 6= i2, compute the second round messages of ΠQuad[i1, i2, j, 2]. The
n-party functionality associated with ΠQuad[i1, i2, j, 2] is Qi1,i2,j,2, defined below.

The (i1)th party has input sti, the (i2)th party has input Ki2,j+1[copy1], the rest
of the parties don’t have any input and the output of this function are the labels in
Ki2,j+1[copy1] corresponding to {(k, Rk ⊕Rk′ ⊕ zk)}, for every location k ∈ LO←i1,j
and k′ ∈ LO→i1,j such that k′ is the unique location associated with k as guaranteed
by Definition 12.

Output the second round messages of all these protocols. Also, output the labels in
Ki,j+1[copy1] with respect to updated state Zi,j+1[copy1].

Figure 4: Description of Ci,j [copy2], for j > 1.

GCi,j [local]. GCi,j [local] first computes Zj [local] using input
(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
and then

proceeds with the local operation for round j.

Claim 5. For each i ∈ [n], j ∈ [t] \ {1}, GCi,j [copy2] has access to the global invariant state Zj [copy2].

Proof. As described in Fig 4, the input to Ci,j [copy2] is of the form
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
. Wire

labels corresponding to Zi,j [copy2] are output by the garbled circuit GCi,j [local]. For every i2 ∈ [n] \ {i},
each garbled circuit GCi′,j [local] for i′ ∈ [n], outputs second round messages for ΠDFunc[i, i2, j] that output
labels in Ki,j−1[copy2] corresponding to {(k, zk)} for every location k ∈ Si2 that is updated by i2 ∈ [n] \ {i}
in the local operation of the (j)th round of the computation phase in the generalized conforming protocol.

On evaluating {GCi′,j [local]}i′∈[n], we can first compute the output for these executions of ΠQuad to
compute wire labels corresponding to {(k, zk)}∀i′ 6=i, k∈Si′ and then use these to evaluate garbled circuit

GCi,j [copy2]. GCi,j [copy2] first computes Zj [copy2] using input
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
and then

proceeds with the second copy operation for round j.

Thus, each garbled circuit receives all the relevant information about the values for all the locations that
were updated by the previous set of garbled circuits. It also receives information about the locations that
were not updated by any party from its own garbled circuit. Together, these are sufficient to reconstruct the
global invariant state. Correctness now follows from the correctness of the conforming protocol.

Efficiency analysis. We prove a sequence of claims.

36

Claim 6. For every i ∈ [n], |Ci,t+1[copy2]| = sc2c·d, for some constant c. Moreover, the depth of Ci,t+1[copy2]
is O(d).

Proof. To prove this, it suffices to upper bound the computational complexity and depth of the next message
function of the generalized conforming protocol. By Lemma 4.1, the next message function of the generalized
conforming protocol can be implemented by a O(d)-depth and sc12c1·d-sized circuit, for some constant c1.

Thus, |Ci,t+1[copy2]| = sc2c·d, for some constant c, and the depth of Ci,t+1[copy2] is O(d).

Claim 7. For every i ∈ [n], j ∈ [t], |Ci,j [copy2]| 6 (k · s · |Ci,j+1[copy1]|)c · 2c·(d+log(s)), for some constant c.
Moreover, the depth of |Ci,j+1[copy1]| is O(d+ log(s)).

Proof. To prove this, it suffices to upper bound the following quantities:

• Complexity of the next message function of the generalized conforming protocol. By Lemma 4.1, the
next message function of the generalized conforming protocol can be implemented by a O(d+ log(s))-
depth and sc12c1·(d+log(s))-sized circuit, for some constant c1.

• Complexity of the next message function of ΠQuad. From Lemma 3.1, the next message function of
ΠQuad can be represented by a O(log(n))-depth (`out · n)c2 -sized circuit, for some constant c2, where
`out is the number of polynomials associated with ΠQuad. From the description of Ci,j [copy2], observe
that `out is sc3 · 2c3·d, for some constant c3

11.

• Total length of the input wire labels Ki,j+1[copy1], for every i ∈ [n]. By Lemma 2.1, this quantity is
(k · |Ci,j+1[copy1]|)c4 · 2c4·d, for some constant c4.

Thus for every i ∈ [n], j ∈ [t], Ci,j [copy2] has depth O(d+ log(s)) and size at most (k · s · |Ci,j+1[copy1]|)c ·
2c·(d+log(s)), for some constant c.

Claim 8. For every i ∈ [n], j ∈ [t+ 1], |Ci,j [local]| 6 (k · s · |Ci,j [copy2]|)c · 2c·(d+log(s)), for some constant c.
Moreover, the depth of Ci,j [local] is O(d+ log(s)).

Proof. To prove this, it suffices to upper bound the following quantities:

• Computational complexity of the next message function of the generalized conforming protocol. By Lemma 4.1,
the next message function of the generalized conforming protocol can be implemented by aO(d+log(s))-
depth and sc12c1·(d+log(s))-sized circuit, for some constant c1.

• Computational complexity of the next message function of ΠDFunc. By Lemma 3.2, the next message
function of ΠDFunc can be represented by a O(d+ log(s))-depth sc22c2·(d+log(s))-sized circuit, for some
constant c2.

• Total length of the input wire labels Ki,j [copy2]. By Lemma 2.1, this quantity is (k · |Ci,j [copy2]|)c3 ·
2c3·d, for some constant c3.

Thus for every i ∈ [n], j ∈ [t + 1], Ci,j [local] has depth O(d + log(s)) size at most (k · s · |Ci,j [copy2]|)c ·
2c·(d+log(s)), for some constant c.

Claim 9. For every i ∈ [n], j ∈ [t+1]\{1}, |Ci,j [copy1]| 6 (k · s · |Ci,j [local]|)c ·2c·(d+log(s)), for some constant
c. Moreover, the depth of Ci,j [copy1] is O(d+ log(s)).

Proof. To prove this, it suffices to upper bound the following quantities:

• Computational complexity of the next message function of the generalized conforming protocol. By Lemma 4.1,
the next message function of the generalized conforming protocol can be implemented by aO(d+log(s))-
depth and sc12c1·(d+log(s))-sized circuit, for some constant c1.

11Specifically, `out is upper bounded by the number of locations in the global state Z modified in any given round; which in
turn is upper bounded by the length of the global state Z in any round.

37

• Computational complexity of the next message function of ΠQuad. From Lemma 3.1, the next message
function of ΠQuad can be represented by a O(log(n))-depth (`out · n)c2-sized circuit, for some constant
c2, where `out is the number of polynomials associated with ΠQuad. From the description of Ci,j [copy1],
observe that `out is sc3 · 2c3·d, for some constant c3.

• Total length of the input wire labels Ki,j [local]. By Lemma 2.1, this quantity is (k · |Ci,j [local]|)c4 ·2c4·d,
for some constant c4.

Thus, for every i ∈ [n], j ∈ [t + 1]\{1}, Ci,j [copy1] has depth O(d + log(s)) and size (k · s · |Ci,j [local]|)c ·
2c·(d+log(s)), for some constant c.

Claim 10. For every i ∈ [n], |Ci,1| 6 (k · s · |Ci,2[copy1]|)c · 2c·(d+log(s)), for some constant c.

Proof. The proof of this claim follows along the same lines as the proof of Claim 9.

Consider the following claim.

Claim 11. For every i ∈ [n], the next message function of ith party can be represented by a circuit of depth
O(d+ log(s)) and size n · (k · s)c · 2c·(d+log(s)), for some constant c.

Proof. Let i ∈ [n]. We first calculate |Ci,1|. There exists a constant c′ such that the following holds,

|Ci,1| 6 (k · s · |Ci,2[copy1]|)c
′
· 2c
′·(d+log(s))

6
(
k · s ·

(
(k · s · |Ci,2[local]|) · 2c

′·(d+log(s))
))c′

· 2c
′·(d+log(s))

=
(
k2 · s2 · |Ci,2[local]|

)c′ · 2(c′2+c′)·(d+log(s))

6 · · ·

6
(
k3(t+1) · s3(t+1) · |Ci,t+1[copy2]|

)c′
· 2(c′+···+c′3(t+1))·(d+log(s))

6
(
k3(t+1) · s3(t+1) · (k · s)c

′
· 2c
′·(d+log(s))

)c′
· 2(c′+···+c′3(t+1))·(d+log(s))

Since t is a constant, we have that |C| 6 (k · s)c
′′
· 2c′′·d, for some constant d. Furthermore, observe that

for every i ∈ [n], j ∈ [t + 1]\{1}, |Ci,1| > |Ci,j [copy1]|. Similarly, for every every i ∈ [n], j ∈ [t + 1],
|Ci,1| > |Ci,j [local]| and |Ci,1| > |Ci,j [copy2]|.

We are now ready to prove the claim: since the garbling of all the circuits Ci,1, {Ci,j [copy1], Ci,j [local],
Ci,j [copy2]}j∈[t+1]\{1} can be done in parallel, the depth of the circuit representing the next message function

of the ith party is governed by the sum of the following quantities: (i) depth of the next message function of
ΠQuad, (ii) depth of the next message function of ΠDFunc and, (iii) maximum depth of the garbling of circuits
Ci,1, {Ci,j [copy1], Ci,j [local], Ci,j [copy2]}j∈[t+1]\{1}. From Lemma 3.1, Lemma 3.2 and the above claims, the

depth of the circuit representing the next message function of the ith party is O(d+ log(s)).
We now upper bound the size of the circuit representing the ith next message function. This is governed by

the sum of the following quantities: (i) size of the next message function of ΠQuad, (ii) size of the next message
function of ΠDFunc and, (iii) n times the garbling complexity of circuit Ci,1. From Lemma 3.1, Lemma 3.2, (i)
and (ii) can be computed by a circuit of size polynomial in k, s and exponential in (d+ log(s)). Combining
this with an upper bound on |Ci,1| determined above, we have that the circuit representing the next message
function of the ith party has size at most (k · s)c · 2c·d, for some constant c.

5.1.2 Proof of Security

Simulator. We now give a description of the Ideal world Simulator S. S internally uses the simulator SimΦ

of the underlying conforming protocol Φ, simulator SimGC for the statistically secure garbing scheme GC and

38

simulators SimΠQuad
and SimΠDFunc

of protocols ΠQuad and ΠDFunc respectively. We can think of the simulator

SimGC to consist of two parts, namely Sim1
GC and Sim2

GC , where the Sim1
GC takes as input the statistical

security parameter k and the topology ϕ(C) of the circuit and outputs simulated garbled key and simulated
input wire keys (gk,K). The second part Sim2

GC takes the output of the first part and the output of the
garbled circuit C(x) as input and outputs a simulated garbled circuit GC. Similarly the simulator SimΠQuad

can also be divided into two parts, (Sim1
ΠQuad

,Sim2
ΠQuad

) that simulate transcripts for the two rounds. The

simulator SimΠDFunc
can also be divided into two parts (Sim1

ΠDFunc
,Sim2

ΠDFunc
) to simulate transcripts for the two

rounds separately. For a detailed description of this simulator for the different cases, see section 3.2.3. Let
H be the set of honest parties and A be the adversary. The simulator S proceeds as follows:

Round 1: S → A:

• The simulator S internally invokes the simulator SimΦ to obtain simulated first round (pre-processing
phase) messages of Φ.

{Zi,1, (Rk : ∀k ∈
⋃
i′ /∈H

Ti,i′)}i∈H ← SimΦ(1k)

It sends this to adversary.

• The simulator S invokes the simulator Sim1
GC to obtain simulated messages,

{(gki,1,Ki,1)}i∈H ← {Sim1
GC(1k, ϕ(Ci,1))}i∈H

where ϕ(Ci,1) is the topology of the circuit in Figure 1.

• For every j ∈ [t+ 1]\{1} and i ∈ H, S computes the following:

(gki,j [copy1],Ki,j [copy1])← Sim1
GC(1k, ϕ(Ci,j[copy1]))

where where ϕ(Ci,j [copy1]) is the topology of the circuit in Figure 2.

(gki,j [local],Ki,j [local])← Sim1
GC(1k, ϕ(Ci,j[local]))

where where ϕ(Ci,j [local]) is the topology of the circuit in Figure 3.

(gki,j [copy2],Ki,j [copy2])← Sim1
GC(1k, ϕ(Ci,j[copy2]))

where where ϕ(Ci,j [copy2]) is the topology of the circuit in Figure 4.

• For every i1, i2,∈ [n] and i1 6= i2, the simulator invokes the simulator Sim1
ΠQuad

of ΠQuad to obtain
simulated first round messages of the honest parties and sends them to the adversary.

{ΠQuad[i1, i2, 1, 1].msg1,i4,→i5}i4∈H,i5 /∈H ← Sim1
ΠQuad

(1k)

• For every i1, i3 ∈ [n], i1 6= i3, i2 ∈ [n+1], j ∈ [t+1]\{1}, the simulator invokes the simulator SimΠQuad
of

ΠQuad to obtain simulated first round messages of the honest parties and sends them to the adversary.

{ΠQuad[i1, i2, i3, j, 1].msg1,i4,→i5}i4∈H,i5 /∈H ← Sim1
ΠQuad

(1k)

• For every i1, i2 ∈ [n], i1 6= i2, j ∈ [t+ 1] \ {1}, the simulator invokes the simulator SimΠQuad
of ΠQuad to

obtain simulated first round messages of the honest parties and sends them to the adversary.

{ΠQuad[i1, i2, j, 2].msg1,i4,→i5}i4∈H,i5 /∈H ← Sim1
ΠQuad

(1k)

• For every i1, i2 ∈ [n], i1 6= i2, j ∈ [t] \ {1}, the simulator invokes the simulator SimΠDFunc
of ΠDFunc to

obtain simulated first round messages of the honest parties and sends them to the adversary.

{ΠDFunc[i1, i2, j].msg1,i′→i′′}i∈H,i′′ /∈H ← Sim1
ΠDFunc

(1k)

39

Round 1: A → S: The simulator receives first round messages from A on behalf of every i ∈ A.

• Receive {Zi,1, (Rk : ∀k ∈
⋃
i′∈H Ti,i′)}i∈A from the adversary.

• For every i1, i2 ∈ [n], i1 6= i2, receive {ΠQuad[i1, i2, 1, 1].msg1,i4,→i5}i4∈A,i5∈H from the adversary.

• For every i1, i3 ∈ [n], i1 6= i3, i2 ∈ [n+1], j ∈ [t+1]\{1}, receive {ΠQuad[i1, i2, i3, j, 1].msg1,i4,→i5}i4∈A,i5∈H
from the adversary.

• For every i1, i2 ∈ [n], i1 6= i2, j ∈ [t+ 1] \ {1}, receive {ΠQuad[i1, i2, j, 2].msg1,i4,→i5}i4∈A,i5∈H from the
adversary.

• For every i1, i2 ∈ [n], i1 6= i2, j ∈ [t] \ {1}, receive {ΠDFunc[i1, i2, j].msg1,i′→i′′}i∈A,i′′∈H from the
adversary.

Round 2: S → A: The simulator now generates the second round messages on behalf of each honest party
i ∈ H as follows. Note that at some point in the ideal world execution, when interacting with SimΦ, when
the simulator SimΦ queries the ideal function with the extracted inputs of the adversary, the simulator S
forwards these extracted inputs to the ideal functionality and forwards its response to simulator SimΦ. We
don’t explicitly specify this step anywhere else in the description of the simulator.

• For every i′ ∈ A, the simulator S sends Zi
′,1 to SimΦ on behalf of party i′ and obtains simulated

messages {Zi,2[copy1]}i∈H.

• Simulating second round messages for ΠQuad[i1, i2, 1, 1]: For each i1, i2 ∈ [n], i1 6= i2, the simulator
S invokes the simulator Sim2

ΠQuad
of ΠQuad.

– For every i1 ∈ A
1. If i2 ∈ H, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs {vk}k∈LOi1,1 ,

{Rk}k∈Si1
⋃
i′∈[n]\{i1}

Ti1,i′
of the adversary, S responds with output Ki2,2[copy1]. Here

Ki2,2[copy1] is the simulated wire keys for the next garbled circuit of party i2. It uses the
extracted inputs {vk}k∈LOi1,1 , {Rk}k∈Si1

⋃
i′∈[n]\{i1}

Ti1,i′
and Z1 to compute Zi1,2[copy1] which

is consistent with the values of sti1 committed by the adversary in Round 1.

2. If i2 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {vk}k∈LOi1,1 ,
{Rk}k∈Si1

⋃
i′∈[n]\{i1}

Ti1,i′
and Ki2,2[copy1] of the adversary, S responds with the wire keys in

Ki2,2[copy1] corresponding to {(k,Rk ⊕ vk)}k∈LOi1,1 .

– For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,2[copy1] of

the adversary, S responds with the wire keys in Ki2,2[copy1] corresponding to {(k, zk)}k∈LOi1,1 ,

where z′ks are updated values in the simulated transcript Zi1,2[copy1].

2. If i2 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys
Ki1,2[copy1] . Here Ki1,2[copy1] is the simulated wire keys for the next garbled circuit of
party i2.

At the end, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, 1, 1].msg2,i4,→i5}i4∈H,i5∈[n]

of the honest parties.

• For each j ∈ [t+ 1] \ {1}, the simulator S proceeds as follows:

– It computes Zj [copy1] as described in fig 2 using the simulated transcript {Zi′,j [copy1]}i′∈H and
the values {Zi′,j [copy1]}i′∈A computed in the previous step.

– For every i′ ∈ A, the simulator S sends Zi
′,j [copy1] to SimΦ on behalf of party i′ and obtains

simulated messages {Zi,j [local]}i∈H.

40

– Simulating second round messages for ΠQuad[i1, i2, i3, j, 1]: For each i1, i3 ∈ [n], i1 6= i3 and
i2 ∈ [n+ 1], the simulator S invokes the simulator of Sim2

ΠQuad
of ΠQuad.

– For every i1 ∈ A
1. If i3 ∈ H, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 of

the adversary, S responds with output Ki3,j [local]. Here Ki3,j [local] is the simulated wire
keys for the next garbled circuit of party i3. It uses the extracted inputs {Rk′}k′∈Si1 , global

state Zj [copy1] and {Rk}k∈Ti2,i1 (if i2 ∈ A, this value is also extracted by SimΠQuad
, else

this corresponds to the simulated values generated by SimΦ in the first round) to compute
Zi1,j [local] which is consistent with the values of sti1 committed by the adversary in Round
1.

2. If i3 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 (if
i2 ∈ H or i2 = n+1) or {Rk′}k′∈Si1 , {Rk}k∈Ti2,i1 (if i2 ∈ A) and Ki3,j [local] of the adversary,
S responds with the wire keys in Ki3,j [local] corresponding to {(k′, R′k ⊕Rk ⊕ zk)}, for every
location k ∈ LI→i1,j and k′ ∈ LI←i1,j such that k′ is the unique location associated with k as
defined in fig 2.

– For every i1 ∈ H
1. If i3 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,j [local]

(and additionally {Rk}k∈Ti2,i1 if i2 ∈ A) of the adversary, S responds with the wire keys in

Ki3,j [local] corresponding to {(k′, R′k ⊕Rk ⊕ zk)}, for every location k ∈ LI→i1,j and k′ ∈ LI←i3,j
such that k′ is the unique location associated with k as defined in fig 2.

2. If i3 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys
Ki3,j [local] . Here Ki3,j [local] is the simulated wire keys for the next garbled circuit of party
i3.

At the end, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, i3, j, 1].msg2,i4,→i5
}i4∈H,i5∈[n] for the honest parties.

– It computes Zj [local] as described in fig 3 using the simulated transcript {Zi′,j [local]}i′∈H and the
values {Zi′,j [local]}i′∈A computed in the previous step.

– For every i′ ∈ A, the simulator S sends Zi
′,j [local] to SimΦ on behalf of party i′ and obtains

simulated messages {Zi,j [copy2]}i∈H.

– Simulating second round messages for ΠDFunc[i1, i2, j]: The function f associated with the
functionality DFi1,i2,j for ΠDFunc[i1, i2, j] is

f = Φi2,j(Z
j [local], .)

For every i1, i2 ∈ [n], i1 6= i2, the simulator invokes the simulator Sim2
ΠDFunc

of ΠDFunc with the
function f .

∗ For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠDFunc
queries the Ideal functionality with extracted implicit input

{(k, zk)}k∈Si2 of the adversary, where {(k, zk)}k∈Si2 = f({Rk}k∈Si2), S responds with
output Ki1,j [copy2]. Here Ki1,j [copy2] is the simulated wire keys for the next garbled
circuit of party i1. It uses the extracted inputs {(k, zk)}k∈Si2 and Zj [local] to compute

Zi2,j [copy2] which is consistent with the values of sti2 committed by the adversary in
Round 1.

2. If i2 ∈ H, when Sim2
ΠDFunc

queries the Ideal functionality, S responds with the wire keys
Ki1,j [copy2]. Here Ki1,j [copy2] is the simulated wire keys for the next garbled circuit of
party i1.

∗ For every i1 ∈ A

41

1. If i2 ∈ H, when Sim2
ΠDFunc

queries the Ideal functionality with extracted inputs Ki1,j [copy2]
of the adversary, S responds with the wire keys in Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 ,

where z′ks are updated values in the simulated transcript Zi2,j [copy2].

2. If i2 ∈ A, when Sim2
ΠDFunc

queries the Ideal functionality with the extracted values Ki1,j [copy2]
and {(k, zk)}k∈Si2 , where {(k, zk)}k∈Si2 = f({Rk}k∈Si2) S responds with the wire keys
in Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 .

At the end, Sim2
ΠDFunc

returns simulated second round messages {ΠDFunc[i1, i2, j].msg2,i′→i′′}i∈H,i′′∈A
of the honest parties.

– It computes Zj [copy2] as described in fig 4 using the simulated transcript {Zi′,j [copy2]}i′∈H and
the values {Zi′,j [copy2]}i′∈A computed in the previous step.

– If j 6= t+ 1, for every i′ ∈ A, the simulator S sends Zi
′,j [copy2] to SimΦ on behalf of party i′ and

obtains simulated messages {Zi,j+1[copy1]}i∈H.

– Simulating second round messages for ΠQuad[i1, i2, j, 2]: If j 6= t+1, for each i1, i2 ∈ [n], i1 6=
i2, the simulator S invokes the simulator of Sim2

ΠQuad
of ΠQuad.

– For every i1 ∈ A
1. If i2 ∈ H, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 ,

{{Rk}k∈Ti1,i′}i′∈[n]\{i1} of the adversary, S responds with output Ki2,j+1[copy1]. Here

Ki2,j+1[copy1] is the simulated wire keys for the next garbled circuit of party i2. It uses the
extracted inputs {Rk′}k′∈Si1 , {{Rk}k∈Ti1,i′}i′∈[n]\{i1} and Zj [local] to compute Zi1,j+1[copy1]
which is consistent with the values of sti1 committed by the adversary in Round 1.

2. If i2 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 ,
{{Rk}k∈Ti1,i′}i′∈[n]\{i1} and Ki2,j+1[copy1] of the adversary, S responds with the wire keys

in Ki2,j+1[copy1] corresponding to {(k′, R′k ⊕ Rk ⊕ zk)}, for every location k′ ∈ LO→i1,j and

k ∈ LO←i1,j such that k′ is the unique location associated with k as defined in fig 4.

– For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,j+1[copy1]

of the adversary, S responds with the wire keys in Ki2,j+1[copy1] corresponding to {(k′, zk)},
for every location k ∈ LO←i1,j where z′ks are the updated values in the simulated transcript

Zi1,j+1[copy1]

2. If i2 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys
Ki2,j+1[copy1] . Here Ki2,j+1[copy1] is the simulated wire keys for the next garbled circuit of
party i2.

Finally, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, j, 2].msg2,i4,→i5}i4∈H,i5∈[n]

for the honest parties.

• For each i ∈ H, the simulator invokes the Sim2
GC to simulate second set of garbled circuit messages.

GCi,1 ← Sim2
GC(gki,1,Ki,1, (Ki,2[copy1][Zi,2[copy1]], {ΠQuad[i1, i2, 1, 1].msg2,i→i′}i1,i2,i′∈[n]))

where Zi,2[copy1] is the simulated intermediate state.

• For each j ∈ [t+ 1] \ {1} and i ∈ H, the simulator invokes the SimGC to simulate second set of garbled
circuit messages.

GCi,j [copy1]←
Sim2

GC(gki,j [copy1],Ki,j [copy1], (Ki,j [local][Z
i,j [local]], {ΠQuad[i1, i2, i3, j, 1].msg2,i→i′}i1,i2,i3,i′∈[n]))

GCi,j [local]← Sim2
GC(gki,j [local],Ki,j [local], (Ki,j [copy2][Zi,j [copy2]], {ΠDFunc[i1, i2, j].msg2,i→i′}i1,i2,i′∈[n]))

42

If j = t+ 1

GCi,j [copy2]← Sim2
GC(gki,j [copy2],Ki,j [copy2],Zt+1[copy2])

Else if j 6= t+ 1

GCi,j [copy2]←
Sim2

GC(gki,j [copy2],Ki,j [copy2], (Ki,j+1[copy1][Zi,j+1[copy1]], {ΠQuad[i1, i2, j, 2].msg2,i→i′}i1,i2,i3,i′∈[n]))

• The simulator sends the following to the adversary:

{GCi,1,Ki,1, {GCi,j [copy1],GCi,j [local],GCi,j [copy2]}j∈[n]}i∈H

We prove security via a sequence of hybrids, where H1 is the real execution and H4 is the simulated execution.

H1: Execution of the protocol in the real world.

H2.1.1 Identical to H1, except that we simulate the garbled circuits corresponding to the 1st round of the
computation phase that are sent by the honest parties. This additionally involves simulating/pre-
computing the messages that the garbled circuit outputs.

We now simulate the garbled circuits corresponding to the first round of the underlying protocol using
the transcript computed in the previous hybrid.

For each i ∈ H, in Round 1,

{(gki,1,Ki,1)}i∈H ← {Sim1
GC(1k, ϕ(Ci,1))}i∈H

where ϕ(Ci,1) is the topology of the circuit in Figure 1. and in round 2,

GCi,1,← Sim2
GC(gki,1,Ki,1, (Ki,2[copy1][Zi,2[copy1]], {ΠQuad[i1, i2, 1, 1].msg2,i→i′}i1,i2,i′∈[n]))

where Ki,2[copy1][Zi,2[copy1]] are the honestly generated labels for GCi,2[copy1] corresponding to the

intermediate global state Zi,2[copy1] computed using the first round messages {Zi′,1}i′∈[n] and the
inputs of the honest parties.

Claim 12. From statistical security of the garbling scheme, hybrids H1 and H2.1.1 are statistically
indistinguishable.

Proof. The statistical indistinguishability of hybrids H2 and H2.1.1 follows from statistical security of
the garbled circuits. The reduction follows from |H|(> n+1

2) invocations of security of the garbled
circuit.

H2.1.2 This hybrid is similar to H2.1.1 except that we now simulate the messages of honest parties for the
ΠQuad protocols corresponding to the first round of the underlying conforming protocol.

We start by simulating the first round messages that are sent to the adversary by the honest parties.

For every i1, i2 ∈ [n], i1 6= i2, the simulator invokes the simulator SimΠQuad
of ΠQuad to obtain simulated

first round messages of the honest parties.

{ΠQuad[i1, i2, 1, 1].msg1,i4,→i5}i4∈H,i5∈A ← Sim1
ΠQuad

(1k)

Then in the second round, we invoke the simulator Sim2
ΠQuad

of ΠQuad.

• For every i1 ∈ A

43

1. If i2 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {vk}k∈LOi1,1 ,
{Rk}k∈Si1

⋃
i′∈[n]\{i1}

Ti1,i′
of the adversary, S responds with the wire keys in Ki2,2[copy1]

corresponding to {(k,Rk ⊕ vk)}k∈LOi1,1 . Here Ki2,2[copy1] are the wire keys for the next

garbled circuit of party i2. It uses the extracted inputs {vk}k∈LOi1,1 , {Rk}k∈Si1
⋃
i′∈[n]\{i1}

Ti1,i′

and Z1 to compute Zi1,2[copy1] which is consistent with the values of sti1 committed by the
adversary in Round 1.

2. If i2 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {vk}k∈LOi1,1 ,
{Rk}k∈Si1

⋃
i′∈[n]\{i1}

Ti1,i′
and Ki2,2[copy1] of the adversary, S responds with the wire keys in

Ki2,2[copy1] corresponding to {(k,Rk ⊕ vk)}k∈LOi1,1 .

• For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,2[copy1] of

the adversary, S responds with the wire keys in Ki1,2[copy1] corresponding to {(k, zk)}k∈LOi1,1 ,

where z′ks are updated values in the honestly computed transcript Zi1,2[copy1].

2. If i2 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys in
Ki2,2[copy1] corresponding to {(k, zk)}k∈LOi1,1 , where z′ks are updated values in the honestly

computed transcript Zi1,2[copy1]. Here Ki2,2[copy1] are the wire keys for the next garbled
circuit of party i2.

At the end, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, 1, 1].msg2,i4,→i5}i4∈H,i5∈[n]

for the honest parties. The simulator S computes the rest of the messages as in Hybrid H2.1.1 and
sends them to the adversary on behalf of the honest parties.

After receiving second round messages from the adversary, the simulator S evaluates the garbled
circuits {GCi′,1}i′∈A of the adversary to obtain second round messages for ΠQuad[i1, i2, 1, 1]. It sends
these to the simulator SimΠQuad

to obtain the output y[i1, i2, 1, 1] of the honest parties. For i2 ∈ H
and y[i1, i2, 1, 1] corresponds to the wire keys in Ki1,2[copy1] for any value other than {(k, zk)}k∈LOi1,1 ,

then S sends ⊥ to SimΠQuad
as the output for the honest parties in ΠQuad[i1, i2, 1, 1]. In this case S also

sets the final output of the honest parties to ⊥. In all other cases it sends y[i1, i2, 1, 1] to SimΠQuad
as

the output for the honest parties in ΠQuad[i1, i2, 1, 1], it evaluates the final output as in the previous
hybrid.

Claim 13. From statistical privacy with knowledge of outputs security of ΠQuad, hybrids H2.1.2 and
H2.1.1 are statistically indistinguishable.

Proof. The indistinguishability of hybrids H2.1.2 and H2.1.1 follows from a sequence of n(n−1) further
sub-hybrids, where in each sub-hybrid, we change one ΠQuad execution between parties from an honest
execution to a simulated execution.

Similarly for j ∈ {2, . . . , t+ 1}, we have the following sequence of hybrids:

H3.j.1.1 Similar to hybrid H3.j−1.3.2(or H2.1.2 if j = 2) except that now we simulate the garbled circuits
corresponding to the copy1 function of the j−th round of the computation phase that are sent by
the honest parties. We compute Zj [copy1] using {Zi′,j [copy1]}i′∈H and the value {Zi′,j [copy1]}i′∈A
computed as in the previous hybrid. Statistical indistinguishability between these two hybrids follows
similar to the statistical indistinguishability between H1 and H2.1.1.

H3.j.1.2 Similar to hybrid H3.j.1.1 except that we now simulate the messages of honest parties for the ΠQuad

protocols corresponding to the first copy function of the j−th round of the underlying protocol as
follows:

44

For each i1, i3 ∈ [n], i1 6= i3 and i2 ∈ [n+ 1], the simulator S uses Sim1
ΠQuad

to simulate the first round

messages for ΠQuad[i1, 12, i3, j, 1]. It then uses {Zi′,j [copy1]}i′∈A to compute messages {Zi,j [local]}i∈H
for the honest parties. The simulator S then invokes the simulator Sim2

ΠQuad
of ΠQuad.

• For every i1 ∈ A
1. If i3 ∈ H, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 of the

adversary, S responds with the wire keys in Ki3,j [local] corresponding to {(k′, R′k⊕Rk⊕zk)},
for every location k ∈ LI→i1,j and k′ ∈ LI←i1,j such that k′ is the unique location associated with
k as defined in fig 2. Here Ki3,j [local] are the wire keys for the next garbled circuit of party
i3. It uses the extracted inputs {Rk′}k′∈Si1 , global state Zj [copy1] and values {Rk}k∈Ti2,i1
(if i2 ∈ A, this value is also extracted by SimΠQuad

, else this corresponds to the simulated
values generated by SimΦ in the first round) to compute Zi1,j [local] which is consistent with
the values of sti1 committed by the adversary in Round 1.

2. If i3 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 (if
i2 ∈ H or i2 = n+1) or {Rk′}k′∈Si1 , {Rk}k∈Ti2,i1 (if i2 ∈ A) and Ki3,j [local] of the adversary,
S responds with the wire keys in Ki3,j [local] corresponding to {(k′, R′k ⊕Rk ⊕ zk)}, for every
location k ∈ LI→i1,j and k′ ∈ LI←i1,j such that k′ is the unique location associated with k as
defined in fig 2.

• For every i1 ∈ H
1. If i3 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,j [local]

(and additionally {Rk}k∈Ti2,i1 if i2 ∈ A) of the adversary, S responds with the wire keys in

Ki3,j [local] corresponding to {(k′, R′k ⊕Rk ⊕ zk)}, for every location k ∈ LI→i1,j and k′ ∈ LI←i3,j
such that k′ is the unique location associated with k as defined in fig 2.

2. If i3 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys

Ki3,j [local] corresponding to {(k′, R′k ⊕Rk ⊕ zk)}, for every location k ∈ LI→i1,j and k′ ∈ LI←i1,j
such that k′ is the unique location associated with k as defined in fig 2. Here Ki3,j [local] are
the wire keys for the next garbled circuit of party i3.

At the end, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, i3, j, 1].msg2,i4,→i5}i4∈H,i5∈[n]

for the honest parties.

Statistical indistinguishability between these two hybrids follows similar to the statistical indistin-
guishability between H2.1.2 and H2.1.1.

H3.j.2.1 Similar to hybrid H3.j.1.2 except that now we simulate the garbled circuits corresponding to the local
function of the j-th round of the computation phase that are sent by the honest honest parties. We
compute Zj [local] using {Zi′,j [local]}i′∈H and the value {Zi′,j [local]}i′∈A computed as in the previous
hybrid.

Statistical indistinguishability between these two hybrids follows similar to the statistical indistin-
guishability between H2 and H2.1.1.

H3.j.2.2 Similar to hybrid H3.j.2.1 except that we now simulate the messages of honest parties for the ΠDFunc

protocols corresponding to the local function of the j−th round of the underlying protocol as follows:

For every i1, i2 ∈ [n], i1 6= i2 j ∈ [t + 1]\, the simulator S uses Sim1
ΠDFunc

to simulate the first round

messages for ΠDFunc[i1, i2, j]. It then uses {Zi′,j [local]}i′∈A to compute messages {Zi,j [copy2]}i∈H for
the honest parties. The function f associated with the functionality DFi1,i2,j for ΠDFunc[i1, i2, j] is

f = Φi2,j(Z
j [local], .)

For every i1, i2 ∈ [n], i1 6= i2 j ∈ [t + 1]\, the simulator invokes the simulator Sim2
ΠDFunc

of ΠDFunc with
the function f .

45

• For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠDFunc
queries the Ideal functionality with extracted implicit inputs

{(k, zk)}k∈Si2 of the adversary, where {(k, zk)}k∈Si2 = f({Rk}k∈Si2). S responds with the
wire keys in Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 . Here Ki1,j [copy2] are the wire
keys for the next garbled circuit of party i1. It uses the extracted inputs {(k, zk)}k∈Si2 and

Zj [local] to compute Zi2,j [copy2] which is consistent with the values of sti2 committed by the
adversary in Round 1.

2. If i2 ∈ H, when Sim2
ΠDFunc

queries the Ideal functionality, S responds with the wire keys in
Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 , where z′ks are updated values in the simulated

transcript Zi2,j [copy2]. Here Ki1,j [copy2] are the wire keys for the next garbled circuit of
party i1.

• For every i1 ∈ A
1. If i2 ∈ H, when Sim2

ΠDFunc
queries the Ideal functionality with extracted inputs Ki1,j [copy2] of

the adversary, S responds with the wire keys in Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 ,

where z′ks are updated values in the simulated transcript Zi2,j [copy2].

2. If i2 ∈ A, when Sim2
ΠDFunc

queries the Ideal functionality with the extracted values Ki1,j [copy2]
and {(k, zk)}k∈Si2 , where {(k, zk)}k∈Si2 = f({Rk}k∈Si2). S responds with the wire keys in
Ki1,j [copy2] corresponding to {(k, zk)}k∈Si2 .

At the end, Sim2
ΠDFunc

returns simulated second round messages {ΠDFunc[i1, i2, j].msg2,i′→i′′}i∈H,i′′∈A
of the honest parties. Statistical indistinguishability between these two hybrids follows similar to the
statistical indistinguishability between H2.1.2 and H2.1.1.

H3.j.3.1 Similar to hybrid H3.j.2.2 except that now we simulate the garbled circuits corresponding to the
copy2 function of the j−th round of the computation phase that are sent by the honest honest parties.
We also compute Zj [copy2] using {Zi′,j [copy2]}i′∈H and the value {Zi′,j [copy2]}i′∈A computed as in
the previous hybrid. Statistical indistinguishability between these two hybrids follows similar to the
Statistical indistinguishability between H1 and H2.1.1.

H3.j.3.2 If j = t+1, this hybrid is identical to hybrid H3.j.3.1. Else, it is similar to hybrid H3.j.3.1 except that
we now simulate the messages of honest parties for the ΠQuad protocols corresponding to the second
copy function of the j−th round of the underlying protocol as follows:

For each i1, i3 ∈ [n], i1 6= i3 and i2 ∈ [n + 1], the simulator S uses Sim1
ΠQuad

to simulate first round

messages for ΠQuad[i1, i2, j, 2]. It then uses{Zi′,j [copy2]}i′∈A to compute messages {Zi,j+1[copy1]}i∈H
for the honest parties.

For each i1, i2 ∈ [n], i1 6= i2 the simulator S invokes the simulator of Sim2
ΠQuad

of ΠQuad.

• For every i1 ∈ A
1. If i2 ∈ H, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 ,

{{Rk}k∈Ti1,i′}i′∈[n]\{i1} of the adversary, S responds with the wire keys in Ki2,j+1[local]

corresponding to {(k′, R′k ⊕ Rk ⊕ zk)}, for every location k′ ∈ LO→i1,j and k ∈ LO←i1,j such
that k′ is the unique location associated with k as defined in fig 4. Here Ki2,j+1[local]
are the wire keys for the next garbled circuit of party i2. It uses the extracted inputs
{Rk′}k′∈Si1 , {{Rk}k∈Ti1,i′}i′∈[n]\{i1} and Zj [local] to compute Zi1,j+1[copy1] which is con-
sistent with the values of sti1 committed by the adversary in Round 1.

2. If i2 ∈ A, when Sim2
ΠQuad

queries the Ideal functionality with extracted inputs {Rk′}k′∈Si1 ,
{{Rk}k∈Ti1,i′}i′∈[n]\{i1} and Ki2,j+1[copy1] of the adversary, S responds with the wire keys

in Ki2,j+1[copy1] corresponding to {(k′, R′k ⊕ Rk ⊕ zk)}, for every location k′ ∈ LO→i1,j and

k ∈ LO←i1,j such that k′ is the unique location associated with k as defined in fig 4.

46

• For every i1 ∈ H
1. If i2 ∈ A, when Sim2

ΠQuad
queries the Ideal functionality with extracted inputs Ki2,j+1[copy1]

of the adversary, S responds with the wire keys in Ki2,j+1[copy1] corresponding to {(k′, zk)},
for every location k ∈ LO←i1,j where z′ks are the updated values in the simulated transcript

Zi1,j+1[copy1]

2. If i2 ∈ H, when Sim2
ΠQuad

queries the Ideal functionality, S responds with the wire keys in

Ki2,j+1[copy1] corresponding to {(k′, zk)}, for every location k ∈ LO←i1,j where z′ks are the

updated values in the simulated transcript Zi1,j+1[copy1]. Here Ki2,j+1[copy1] is the simulated
wire keys for the next garbled circuit of party i2.

At the end, Sim2
ΠQuad

returns simulated second round messages {ΠQuad[i1, i2, j, 2].msg2,i4,→i5}i4∈H,i5∈[n]

for the honest parties. Statistical indistinguishability between these two hybrids follows similar to the
statistical indistinguishability between H2.1.2 and H2.1.1.

H4 Similar to hybrid H3.t+1.3.2 except that instead of using the inputs of the honest parties to compute
their transcripts in the conforming protocol, we rely on the simulator of the underlying protocol, SimΦ,
to simulate the messages of the honest parties.

Claim 14. From the statistical malicious security of the underlying conforming protocol Φ, H4 and
H3.t+1.3.2 are statistically indistinguishable.

Proof. The statistical indistinguishability of hybrids H3.t+1.3.2 and Hyb4 follows from the malicious
security of the underlying conforming protocol Φ.

Hyb4 is identical to the ideal world simulator, and hence we’re done.

5.2 From Privacy with Knowledge of Outputs to Security with Abort

We now show that existence of a maliciously secure two-round IT-MPC protocol for functions in NC1 that
achieves privacy with knowledge of outputs, implies existence of a maliciously secure two-round IT-MPC
protocol for functions in NC1 that achieves security with abort. This reduction preserves the corruption
threshold. We observe that this transformation can be generalized and works for any arbitrary round
protocol.

Lemma 5.3. There exists a general complexity preserving information-theoretic compiler that transforms
any two-round MPC that achieves strong privacy with knowledge of outputs into a two-round protocol that
achieves security with abort against malicious adversaries with the same corruption threshold.

Building Blocks. We use the following ingredients in our construction.

• A two round MPC protocol Π, in the honest majority setting satisfying statistical privacy with knowl-
edge of outputs from Lemma 5.2.

• A statistically secure one-time multi-key MAC scheme (MK.KeyGen,MK.Sign,MK.Verify) for multi-bit
message space from Corollary 3.4.

Construction. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let {x1, . . . , xn} be their
respective inputs. Given any function F ∈ NC1, let F ′ ∈ NC1 be an augmented single output functionality
that computes F along with a multi-key MAC on the output of F . That is, the function F ′ takes xi and Ki ∈
K as input from each party Pi and returns y = F (x1, . . . , xn) along with the tag τ ← MK.Sign(K1, . . . ,Kn, y),
where MK.Sign is the signing algorithm of a one-time multi-key MAC scheme. The protocol proceeds as
follows:

47

• Rounds 1 and 2: Each party Pi for i ∈ [n] samples a key Ki ← MK.KeyGen(1k) for the multi-
key MAC scheme. It sets its augmented input to x′i = (xi,Ki). The parties then execute Π for the
augmented functionality F ′.

• Output Evaluation: Let y′ = (y, τ) denote the output of the protocol Π for the functionality F ′. Each
party Pi for i ∈ [n], runs the verification algorithm of the multi-key MAC scheme to verify if τ is a valid
multi-key MAC corresponding to y and its key Ki. That is, it checks whether MK.Verify(Ki, y, τ) = 1.
If so, it outputs y, else it outputs ⊥.

Security. We now give a description of the Ideal world statistical simulator S. S internally uses the
simulator SimΠ of the underlying protocol Π for functionality F ′. Let A be the adversary. The simulator S
proceeds as follows:

• Round 1: S → A: Compute the first round simulated messages Π1
S→A on behalf of the honest

parties using SimΠ and send it to the adversary.

• Round 1: A → S: Receive the first round messages Π1
A→S from the adversary.

• Round 2: S → A: Run SimΠ on inputs Π1
A→S . When SimΠ queries the Ideal functionality on

extracted inputs {x′i = (xi,Ki)}i∈A of the adversary, send {x′i}i∈A to the Ideal functionality of F and
receive y in return. Sample keys for the multi-key MAC scheme on behalf of the honest parties, i.e.,
for each i ∈ [n] \ A12, Ki ← MK.KeyGen(1k). Use these keys along with the keys extracted from the
adversary to compute a multi-key MAC on y, i.e., τ ← MK.Sign(K1, . . . ,Kn, y). Send (y, τ) to the
simulator SimΠ. Finally SimΠ outputs the simulated second round messages Π2

S→A. Send this to the
adversary.

• Round 2: A → S: Receive second round messages Π2
A→S from the adversary.

• Output of Honest Parties: The simulator reconstructs the output (y∗, τ∗) for the honest parties. It
checks whether (y∗, τ∗) = (y, τ). If so, it outputs y, else if ∃i ∈ [n]\A, such that MK.Verify(Ki, y

∗, τ∗) =
1 then output a special abort ⊥∗, else output ⊥.

We now prove that the joint distribution of the adversary’s view and the output of honest parties is
statistically indistinguishable in the Real and Ideal worlds. Given that the underlying protocol Π achieves
privacy with knowledge of outputs against malicious adversaries, the view of the adversary simulated by
the simulator SimΠ in the Ideal world is statistically indistinguishable from the view of the adversary in the
Real world. Therefore, from the construction of S, it follows that the view of the adversary is statistically
indistinguishable in the Real and Ideal worlds. The joint distribution of the view of the adversary and the
output of the honest parties is also statistically indistinguishable, conditioned on the simulator not outputting
the special abort ⊥∗. Recall that the simulator outputs ⊥∗ if (y′, τ ′) 6= (y, τ) and ∃i ∈ [n] \ A such that
MK.Verify(Ki, y

∗, τ∗) = 1. Let us assume for the sake of contradiction that the adversary A can force an
output (y∗, τ∗) 6= (y, τ) such that ∃i ∈ [n] \ A such that MK.Verify(Ki, y

∗, τ∗) = 1 with non-negligible
probability. We will now construct another adversary B that uses A to break the unforgeability of the
multi-key MAC scheme with non-negligible probability. The adversary B interacting with the challenger of
the multi-key MAC scheme proceeds as follows:

• Round 1: B → A: Compute the first round simulated messages Π1
B→A on behalf of the honest

parties using SimΠ and send it to the adversary.

• Round 1: A → B: Receive the first round messages Π1
A→B from the adversary.

• Round 2: B → A: Run SimΠ on inputs Π1
A→B. When SimΠ queries the Ideal functionality on

extracted inputs {x′i = (xi,Ki)}i∈A of the adversary, send {x′i}i∈A to the Ideal functionality of F and

12We slightly abuse notation here and use A to also denote the subset of parties controlled by the adversary.

48

receive y in return. Send the keys {Ki}i∈A extracted from the adversary and the output y to the
challenger of the multi-key MAC scheme. The challenger returns a multi-key MAC τ on y. Send (y, τ)
to the simulator SimΠ. Finally SimΠ outputs simulated second round messages Π2

B→A. Send this to
the adversary.

• Round 2: A → B: Receive second round messages Π2
A→B from the adversary.

• Output of Honest Parties: Reconstruct the output (y∗, τ∗) for the honest parties and sends τ∗ to
the challenger of the multi-key MAC scheme.

Since, (y∗, τ∗) 6= (y, τ) and ∃i ∈ [n] \A such that MK.Verify(Ki, y
∗, τ∗) = 1, adversary B has managed to

break the security of one-time multi-key MACs. But since our multi-key MAC scheme is ε(k)-statistically
secure, this can only happen with some negligible probability. Thus, our assumption is incorrect and A can
force such a (y∗, τ∗) only with at most negligible probability. Therefore, overall the joint distribution of the
view of the adversary and the output of the honest parties is also statistically indistinguishable.

6 Impossibility of IT-MPC with Public Reconstruction of Output
Property

In this section, we show that any IT-MPC protocol that achieves security with abort cannot also satisfy
public reconstruction of output – a property that we formally define. We prove this by showing implication
to information-theoretic one-time signatures, which are known to be impossible [Rom90].

Intuitively, a r-round MPC protocol satisfies the public reconstruction property of output property if:
(1) the output of a protocol can be computed given only the broadcast channel messages of all the parties,
(2) the broadcast channel messages of all n parties in the first (r − 1)-rounds and the broadcast channel
messages of any (n− t) parties in the the rth round, do not reveal anything about the output of the protocol.

Definition 13 (Public Reconstruction of Output Property). We say that an r-round MPC protocol Π that
achieves security with abort against t malicious corruptions satisfies public reconstruction of output property
if the following hold:

1. There exists a PPT algorithm OutΠ(.) that takes as input the broadcast channel messages of all the
parties in the r rounds and computes the output of the protocol.

2. There exists a simulator that receives no input (and no access to the ideal functionality) that can
simulate a partial transcript consisting of the broadcast channel messages of all parties in the first
(r − 1) rounds and the broadcast channel messages of any (n− t) parties in the rth round.

We now proceed to prove the following theorem.

Theorem 6.1. There does not exist a statistically-secure MPC protocol achieving security with abort, that
also satisfies the public reconstruction of output property.

Proof. Let us assume that there exists an r-round IT-MPC protocol with public reconstruction of output
property, that achieves security with abort against t malicious corruptions. We show that the existence of
such a protocol Π implies existence of information-theoretic one-time digital signatures, which are known to
be impossible.

Let S = {1, . . . , t} be a fixed subset. Let f0 and f1 be non-constant (single input) n-party functionalities
with boolean outputs. Let Π0 securely compute f0 and let Π1 securely compute f1. The one-time digital
signature scheme can be constructed as follows:

• (vk, sk)← KeyGen(1k): Sample y0 such that for input vector x0, where the input of the first party in S
is y0 and inputs of all other parties are ⊥, f0(x0) = 0. Similarly sample y1 such that for input vector
x1, where the input of the first party in S is y1 and inputs of all other parties are ⊥, f1(x1) = 1. Input

49

vector x0 is used in the execution of Π0 and x1 is used in execution Π1. Generate the messages of all
the parties in both Π0 and Π1, including private channel messages in the first (r−1) rounds. Generate
the messages of all the parties in the set S in both Π0 and Π1 in the rth round.

– Signing Key: Let stix be the private state of party Pi at the end of round (r − 1) in Πx. Set sk
to be the private states of all parties in S in both Π0 and Π1. That is set sk = ({sti0, sti1}i∈S).

– Verification Key: Set vk to be the set of broadcast messages of all the parties in the first
(r− 1) rounds and broadcast messages of parties in S in the last round in both Π0 and Π1. That
is let vk0 = ({Πi,j

0 }i∈S,j∈[r−1], {Πi,j
0 }i∈S,j∈[r]) and vk1 = ({Πi,j

1 }i∈S,j∈[r−1], {Πi,j
1 }i∈S,j∈[r]), where

Πi,j
x refers to the jth round broadcast channel message of party Pi in Πx. Set vk = (vk0, vk1).

Output (vk, sk).

• σ ← Sign(x, sk): Given a message bit x ∈ {0, 1}, generate the last round broadcast messages of parties
in S in the execution of Πx, i.e., generate {Πi,r

x }i∈S . Output σ ={Πi,r
x }i∈S .

• b ← Verify(vk, x, σ): Parse vk = ({Πi,j
0 }i∈S,j∈[r−1], {Πi,j

0 }i∈S,j∈[r], {Π
i,j
1 }i∈S,j∈[r−1], {Πi,j

1 }i∈S,j∈[r]) and

σ = {Πi,r
x }i∈S . Run the public reconstruction algorithm on σ, i.e., run the public reconstruction

algorithm on the broadcast messages of all the n parties. Compute

x′ ← OutΠ({Πi,j
x }i∈[n],j∈[r])

If x′ = x output 1, else output 0.

Correctness. Correctness follows from the first condition of the public reconstruction of output property
of the underlying MPC protocol Π.

Unforgeability. We now argue unforgeability of this scheme. For unforgeability, we want to argue that
given the verification key vk and a valid signature on x, the adversary should not be able to generate a
valid signature on x. In other words, given {Πi,j

x }i∈[n],j∈[r], {Πi,j
x }i∈S,j∈[r−1], {Πi,j

x }i∈S,j∈[r], no unbounded

adversary A should not be able to compute the {Πi,r
x }i∈S such that,

x← OutΠ({Πi,j
x }i∈[n],j∈[r]

Sample y′ such that for input vector x′, where the input of the first party in S is y′ and inputs of all other
parties are ⊥, fx(x′) = 0. Let Πx′ be an execution of Π for functionality fx, where the input of the first
party in S is y′. We start by showing that the following two distributions are indistinguishable:

D0: {{Πi,j
x }i∈[n],j∈[r], {Πi,j

x }i∈S,j∈[r−1], {Πi,j
x }i∈S,j∈[r]}

D1: {{Πi,j
x }i∈[n],j∈[r], {Πi,j

x′ }i∈S,j∈[r−1], {Πi,j
x′ }i∈S,j∈[r]}

Claim 15. Let k be the statistical security parameter and ε(k) be a negligible function in k. Then the
following holds for any distinguisher A:

D0 ≈s,ε(k) D1

Proof. Statistical indistinguishability between distributions D0 and D1 follows from the second condition of
the public reconstruction of output property of Π.

All that is left to show is that there does not exist any adversary A that given D1 = {{Πi,j
x }i∈[n],j∈[r],

{Πi,j
x′ }i∈S,j∈[r−1], {Πi,j

x′ }i∈S,j∈[r]}, can compute {Πi,r
x′ }i∈S such that x← OutΠ({Πi,j

x′ }i∈[n],j∈[r] with an over-
whelming probability.

Recall that statistical malicious security with abort guarantees correctness of output of the honest parties,
i.e., for Π, we know that for any adversarial strategy, the output of Πx′ is either x or ⊥ with overwhelming

50

probability. Let us assume for the sake of contradiction that there exists such an adversary that can compute
{Πi,r

x′ }i∈S such that x ← OutΠ({Πi,j
x′ }i∈[n],j∈[r] with overwhelming probability. This is equivalent to a

malicious adversary in Π that behaves honestly in the first round and misbehaves in the second round.
Since this adversary has managed to force a wrong output on the honest parties, we can now use this
adversary to break the malicious security with abort property of the underlying protocol Π. Unforgeability
of the proposed signature scheme thus follows.

7 Two-Round MPC over P2P: Security with Selective Abort

In this section we describe a general compiler to obtain a two-round information-theoretic MPC protocol
satisfying malicious security with selective abort over point-point channels from any two-round information-
theoretic MPC satisfying security with abort against malicious adversaries.

Theorem 7.1. There exists a general information theoretic compiler that transforms any two round mali-
ciously secure MPC protocol (whose second round messages are computable in NC1) over broadcast and pri-
vate channels that achieves security with abort into a two-round protocol over private channels that achieves
selective security with abort against malicious adversaries.

7.1 Construction

We now give a construction of our compiler.

Building Blocks. We use the following ingredients in our construction.

• A two-round MPC Π, in the honest majority setting satisfying statistical malicious security. We addi-
tionally want the second round next-message function of each party in this protocol to be implementable
using an NC1 circuit. We also want the

• Information-theoretic garbling scheme (Gen,Garb,Eval).

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let {x1, . . . , xn} be their respective
inputs and r1, . . . , rn be their respective randomness used in the underlying protocol Π. Let k be the
statistical security parameter.

Round 1. For each i ∈ [n], party Pi does the following in the first round.

• Compute the first round messages of Π.

(Π.msg1,i→B , {Π.msg1,i→j}j∈[n]) := Π1(1k, i, xi; ri)

where Π1 is the first round next message function of the protocol Π. Π.msg1,i→B is the message that
is broadcast by Pi in the first round of Π and Π.msg1,i→j is the message that is sent to party Pj over
a private channel.

• Computes
(gki,Ki)← Gen(1k, 1L, 1d)

where L is the number of leaves and d is the depth of the second round next message function of Π as
defined in the next round. As defined in Definition 2.2, we parse Ki as (K0

i,1,K
1
i,1, . . . ,K

0
i,L,K

1
i,L)

• Compute shares {{Kb,j
i,` }j∈[n]}`∈[L],b∈{0,1} such that for each ` ∈ [L] and b ∈ {0, 1},

Kb
i,` :=

⊕
j∈[n]

Kb,j
i,`

51

• For each j ∈ [n] \ {i}, it sends (Π.msg1,i→B ,Π.msg1,i→j , {K
b,j
i,` }`∈[L],b∈{0,1}) to party Pj over a private

channel.

Round 2. For each i ∈ [n], party Pi does the following.

• Computes a garbled circuit as follows:

GCi ← Garb(gki,Π2(1k, i, xi, {Π.msg1,j→i,Π.msg1,i→j}j∈[n], .; ri))

where Π2(1k, i, xi, {Π.msg1,j→i}j∈[n], .; ri) is the second round next message function of party Pi in Π
that takes the messages {Π.msg1,j→B}j∈[n] that were broadcast in the first round as input.

• For each j ∈ [n] \ {i}, it sends (GCi, {{KX`,i
j,` }j∈[n]}`∈[L]) to party Pj over a private channel. Here

X = Π.msg1,1→B || . . . ||Π.msg1,n→B and X` denotes the `th bit of X.

Reconstruction. Each party does the following.

• It reconstructs the input wire keys received in the previous round. For each i ∈ [n] and ` ∈ [L], it
computes the following.

KX`
j,` :=

⊕
i∈[n]

KX`,i
j,`

and for each j ∈ [n], it sets

Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B] := (KX1
j,1 , . . . ,K

XL
j,1)

• For each j ∈ [n] it evaluates the garbled circuit received in the previous round.

Π.msg2,j→B := Eval(GCj ,Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B])

• It runs the reconstruction algorithm of Π on {Π.msg2,j→B}j∈[n] to compute the output.

Instantiating Theorem 7.1 using the protocol from Lemma 5.1, we obtain the following corollary:

Corollary 7.2. There exits a two round MPC over P2P channels for NC1 functions that achieves statistical
security with selective abort against t < n/2 malicious corruptions.

7.2 Proof of Security

We now give a description of the Ideal world simulator S. S internally uses the simulator SimΠ of the
underlying two-round protocol and the simulator SimGC for the perfectly secure garbling scheme GC. Let H
be the set of honest parties and A be the adversary. The simulator S proceeds as follows:

Round 1. S → A:

• Simulates the first round messages of Pi for each i ∈ H in Π.

{(Π.msg1,i→B , {Π.msg1,i→j}j∈A)}i∈H := SimΠ(1k)

• For each i ∈ H simulate
(gki,Ki)← Sim1

GC(1k, ϕ(Π2))

where ϕ(Π2) is the topology of the circuit implementing the second round next message function in Π.

As defined in Definition 2.2, we parse Ki as (K0
i,1,K

1
i,1, . . . ,K

0
i,L,K

1
i,L). Here K0

i,` = K1
i,` for each

` ∈ [L]

52

• Generate random shares {{Kb,j
i,` }j∈A}`∈[L],b∈{0,1} for each ` ∈ [L] and b ∈ {0, 1}

• For each j ∈ A, it send (Π.msg1,i→B ,Π.msg1,i→j , {K
b,j
i,` }`∈[L],b∈{0,1}) to the adversary over a private

channels.

Round 1. A → S :

• Receive first round messages of Π, {(Π.msg1,i→B , {Π.msg1,i→j}j∈H)}i∈A from the adversary.

• Receive shares for wire keys {{Kb,j
i,` }j∈H}`∈[L],b∈{0,1} from the adversary.

Round 2. S → A :

• Let Πi.msg1,j→B be the value of Π.msg1,j→B received by the simulator on behalf of party Pi from the
the adversarial party Pj . Check if for all i1, i2 ∈ H

{Πi1 .msg1,j→B}j∈A = {Πi2 .msg1,j→B}j∈A

• If the above check goes through:

– Simulate the second round messages,

{Π.msg2,i→B}i∈H ← SimΠ(1k, {Π.msg1,j→i}i∈H,j∈[n], {Π.msg1,j→B}j∈[n])

– For each i ∈ H, simulate a garbled circuit as follows:

GCi ← Sim2
GC(gki,Ki,Π.msg2,i→B)

where Π.msg2,i→B is the simulated second round message party Pi.

– For each i ∈ H, choose the remaining shares {{KX`,j
i,` }j∈H}`∈[L],b∈{0,1} such that for each ` ∈ [L],

Kb
i,` :=

⊕
j∈[n]

KX`,j
i,`

where X = Π.msg1,1→B || . . . ||Π.msg1,n→B and X` denotes the `th bit of X.

– For each i ∈ H, j ∈ A, it sends (GCi, {{KX`,i
j,` }j∈[n]}`∈[L]) to the adversarial party Pj over a

private channel.

• Else,

– For each i ∈ H, simulate a garbled circuit as follows:

GCi ← SimGC(gki, 0
L)

– For each i ∈ H, choose the remaining shares randomly {{K0,j
i,` }j∈H}`∈[L].

– For each i ∈ H, j ∈ A, it sends (GCi, {{K0,i
j,`}j∈H}`∈[L], {{K

Xi` ,i
j,` }j∈A}`∈[L]) to the adversarial

party Pj over a private channel.

Here Xi = Πi.msg1,1→B || . . . ||Πi.msg1,n→B and Xi
` denotes the `th bit of Xi.

Round 2. A → S: The simulator receives the second round messages on behalf of the honest parties
from the adversary.

We prove security via a sequence of hybrids.

53

H1 Execution of the protocol in the real world

H2 This hybrid is similar to H1, except that in this hybrid the simulator generates random shares
{{Kb,j

i,` }j∈A}`∈[L],b∈{0,1} for each ` ∈ [L] and b ∈ {0, 1} in the first round. In the second round it checks
if for all i1, i2 ∈ H

{Πi1 .msg1,j→B}j∈A = {Πi2 .msg1,j→B}j∈A

where Πi.msg1,j→B is the value of Π.msg1,j→B received by the simulator on behalf of party Pi from
the the adversarial party Pj .

• If this check goes through, for each i ∈ H, it chooses the remaining shares {{KX`,j
i,` }j∈H}`∈[L],b∈{0,1}

such that for each ` ∈ [L],

Kb
i,` :=

⊕
j∈[n]

KX`,j
i,`

where X = Π.msg1,1→B || . . . ||Π.msg1,n→B and X` denotes the `th bit of X.

• If this check fails, for each i ∈ H, it chooses the remaining shares randomly {{K0,j
i,` }j∈H}`∈[L].

For each i ∈ H, j ∈ A, it sends

(GCi, {{K0,i
j,`}j∈H}`∈[L], {{K

Xi` ,i
j,` }j∈A}`∈[L]) to the adversarial party Pj over a private channel.

Here Xi = Πi.msg1,1→B || . . . ||Πi.msg1,n→B and Xi
` denotes the `th bit of Xi.

Claim 16. Hybrids H1 and H2 are statistically indistinguishable.

Proof. We rely on the security of garbled circuits to argue indistinguishability of H1 and H2. Security
of garbled circuits ensures that given a garbled circuit, the probability that the adversary is be able to
guess a valid wire key is negligible.

The only difference between hybrid H1 and H2 occurs when the adversary sends different values of
Π.msg1,j→B to different honest parties for some j ∈ A. In this case, in hybrid H1, the wire keys that
it reconstructs correspond to some arbitrary value. While the wire keys that it reconstructs in H2

correspond to a random value. If there exists an adversary who can distinguish between these hybrids
with a noticeable probability, then we can use this adversary to build an adversary who breaks the
security of the garbling scheme.

H3 This hybrid is similar to hybrid H2, except that in this hybrid instead of generating the garbled circuits
honestly, the simulator simulates them using the simulator of the garbling scheme. More specifically,
in the first round, for each i ∈ H it computes

(gki,Ki)← Sim1
GC(1k, ϕ(Π2))

Then in the second round, it checks if for all i1, i2 ∈ H

{Πi1 .msg1,j→B}j∈A = {Πi2 .msg1,j→B}j∈A

where Πi.msg1,j→B is the value of Π.msg1,j→B received by the simulator on behalf of party Pi from
the the adversarial party Pj .

• If this check goes through, for each i ∈ H, it simulates the garbled circuit as follows:

GCi ← Sim2
GC(gki,Ki,Π.msg2,i→B)

• If this check fails, for each i ∈ H, it simulates the garbled circuit as follows:

GCi ← Sim2
GC(gki,K, 0L)

54

Claim 17. From perfect security of the garbling scheme, hybrids H3 and H4 are identical.

Proof. The indistinguishability of hybrids H3 and H4 follows from perfect security of the garbled
circuits. The reduction follows from |H|(> n+1

2) invocations of the security of garbled circuits.

H4 This hybrid is similar to hybrid H3, except that in this hybrid instead of computing the messages of Π,
using the actual inputs and randomness of the honest parties, it simulates them using the simulator of
Π. More specifically, in the first round, it simulates the first round messages of Pi for each i ∈ H in Π.

{(Π.msg1,i→B , {Π.msg1,i→j}j∈A)}i∈H := SimΠ(1k)

Then in the second round, it checks if for all i1, i2 ∈ H

{Πi1 .msg1,j→B}j∈A = {Πi2 .msg1,j→B}j∈A

where Πi.msg1,j→B is the value of Π.msg1,j→B received by the simulator on behalf of party Pi from
the the adversarial party Pj . If the above check goes through, it simulates the second round messages,

{Π.msg2,i→B}i∈H ← SimΠ(1k, {Π.msg1,j→i}i∈H,j∈[n], {Π.msg1,j→B}j∈[n])

Claim 18. From the statistical malicious security of the underlying two-round protocol Π for security
with abort, H3 and H4 are statistically indistinguishable.

Proof. The statistical indistinguishability of hybrids H3 and H4 follows from the statistical malicious
security of the underlying conforming protocol Π.

Hyb4 is identical to the ideal world simulator, and hence we’re done.

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation in two
rounds. In Theory of Cryptography - 16th International Conference, TCC 2018, 2018.

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the round-
complexity of malicious mpc. 2019. https://eprint.iacr.org/2019/200.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-optimal se-
cure multiparty computation with honest majority. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 395–424, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany.

[Bea90] Donald Beaver. Multiparty protocols tolerating half faulty processors. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
560–572, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana,
and Amit Sahai. Promise zero knowledge and its applications to round optimal MPC. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II,
volume 10992 of Lecture Notes in Computer Science, pages 459–487, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

55

https://eprint.iacr.org/2019/200

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Piotr Rudnicki, editor, 8th ACM Symposium Annual on
Principles of Distributed Computing, pages 201–209, Edmonton, Alberta, Canada, August 14–
16, 1989. Association for Computing Machinery.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via garbled interactive
circuits. Technical report, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513,
Baltimore, MD, USA, May 14–16, 1990. ACM Press.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th Annual ACM
Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV,
USA, October 14–17, 2001. IEEE Computer Society Press.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols
(extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 11–19,
Chicago, IL, USA, May 2–4, 1988. ACM Press.

[CD01] Ronald Cramer and Ivan Damg̊ard. Secure distributed linear algebra in a constant number of
rounds. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 119–136, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany.

[Cha90] David Chaum. The spymasters double-agent problem: Multiparty computations secure un-
conditionally from minorities and cryptographically from majorities. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
591–602, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally compos-
able two-party computation without set-up assumptions. In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
68–86, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 378–394, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Heidelberg, Germany.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In 26th Annual ACM Symposium on Theory of Computing, pages 554–563, Montréal,
Québec, Canada, May 23–25, 1994. ACM Press.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 14(4):183–186, 1982.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of
verifiable secret sharing and secure multicast. In 33rd Annual ACM Symposium on Theory of
Computing, pages 580–589, Crete, Greece, July 6–8, 2001. ACM Press.

56

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty
computation. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 178–193, Santa Barbara, CA, USA, August 18–22,
2002. Springer, Heidelberg, Germany.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round mpc: Information-theoretic
and black-box. In Theory of Cryptography - 16th International Conference, TCC 2018, 2018.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement.
Journal of Cryptology, 18(3):247–287, July 2005.

[GMS18] Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan. Two-round multiparty secure compu-
tation minimizing public key operations. In Annual International Cryptology Conference, pages
273–301. Springer, 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM
Symposium on Theory of Computing, pages 218–229, New York City, NY, USA, May 25–27,
1987. ACM Press.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round mpc from bilinear
maps. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on,
pages 588–599. IEEE, 2017.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from min-
imal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages
468–499, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[GS18b] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from min-
imal assumptions. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part II, pages 468–499, 2018.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Comput-
ing without simultaneous interaction. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 132–150, Santa Bar-
bara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications. In
Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-Gan, Israel,
June 17-19, 1997, Proceedings, pages 174–184, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with ap-
plications to round-efficient secure computation. In 41st Annual Symposium on Foundations
of Computer Science, pages 294–304, Redondo Beach, CA, USA, November 12–14, 2000. IEEE
Computer Society Press.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,
Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP 2002: 29th Inter-
national Colloquium on Automata, Languages and Programming, volume 2380 of Lecture Notes
in Computer Science, pages 244–256, Malaga, Spain, July 8–13, 2002. Springer, Heidelberg,
Germany.

57

[IK04] Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic multiparty com-
putation. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 439–455, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure com-
putation with minimal interaction, revisited. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 359–378, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with minimal
interaction. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 577–594, Santa Barbara, CA, USA, August 15–19,
2010. Springer, Heidelberg, Germany.

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party computation.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 425–458, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st Annual ACM Symposium on Theory of Computing, pages
73–85, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd An-
nual ACM Symposium on Theory of Computing, pages 387–394, Baltimore, MD, USA, May 14–
16, 1990. ACM Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

58

	Introduction
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	Information-Theoretic MPC
	Garbling Schemes

	Helper Primitives
	Delayed-Function Two-Round Secure MPC for Quadratic Polynomials
	Delayed-Function Two-round Secure MPC
	Two-Input Multiparty Functionalities
	Security
	Construction
	Proof of Security

	Information-Theoretic One-Time Multi-Key MACs

	Generalized Conforming Protocols
	Construction

	Two-round MPC over Broadcast and P2P: Security with Abort
	A Two-round Secure MPC Satisfying Privacy with Knowledge of Outputs
	Construction.
	Proof of Security

	From Privacy with Knowledge of Outputs to Security with Abort

	Impossibility of IT-MPC with Public Reconstruction of Output Property
	Two-Round MPC over P2P: Security with Selective Abort
	Construction
	Proof of Security

