
Hardness of LWE on General Entropic Distributions

Zvika Brakerski ∗ Nico Döttling†

Abstract

The hardness of the Learning with Errors (LWE) problem is by now a cornerstone of the
cryptographic landscape. In many of its applications the so called “LWE secret” is not sam-
pled uniformly, but comes from a distribution with some min-entropy. This variant, known as
“Entropic LWE”, has been studied in a number of works, starting with Goldwasser et al. (ICS
2010). However, so far it was only known how to prove the hardness of Entropic LWE for secret
distributions supported inside a ball of small radius.

In this work we resolve the hardness of Entropic LWE with arbitrary long secrets, in the
following sense. We show an entropy bound that guarantees the security of arbitrary Entropic
LWE. This bound is higher than what is required in the ball-bounded setting, but we show that
this is essentially tight. Tightness is shown unconditionally for highly-composite moduli, and
using black-box impossibility for arbitrary moduli.

Technically, we show that the entropic hardness of LWE relies on a simple to describe
lossiness property of the distribution of secrets itself. This is simply the probability of recovering
a random sample from this distribution s, given s+e, where e is Gaussian noise (i.e. the quality
of the distribution of secrets as an error correcting code for Gaussian noise). We hope that this
characterization will make it easier to derive entropic LWE results more easily in the future.
We also use our techniques to show new results for the ball-bounded setting, essentially showing
that under a strong enough assumption even polylogarithmic entropy suffices.

1 Introduction

Lattice-based cryptography has emerged in the last few decades as one of the most important
developments in cryptography. Lattice-based cryptographic schemes have been shown to achieve
functionalities that are unknown under any other cryptographic structure (such as fully homomor-
phic encryption [Gen09, BV11], attribute-based encryption for circuits [GVW13] and many others).
At the same time, it is possible in many cases to show strong security properties such as worst-case
to average-case hardness results [Ajt96, AD97, MR04, Reg05] that relate the hardness of break-
ing the cryptographic scheme to that of solving approximate short-vector problems in worst-case
lattices, a problem that resists algorithmic progress even when when use of quantum computers is
considered.

Much of the progress in advancing lattice-based cryptography can be attributed to the hardness
of the Learning with Errors (LWE) problem, introduced by Regev [Reg05]. This problem can be
stated in a very clean linear-algebraic syntax, which allows to utilize it for applications very easily,
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and at the same time was shown to enjoy worst-case hardness as explained above. An instance
of the LWE problem has the following form. It is parameterized by a dimension n and modulus
q � n. Consider the following distribution. Sample a (public) random matrix A ∈ Zn×mq , for
arbitrary m = poly(n), and a (secret) random vector s ∈ Znq , and output (A,y), where y = sA + e
(mod q), and e is a noise vector selected from some distribution (often a Gaussian with parameter
σ � q). The goal of the LWE solver is to find s given (A,y), where m can be as large as the
adversary desires. In the most straightforward use of this assumption for cryptography (suggested
in Regev’s original paper), (A,y) are used as public key for an encryption scheme, and s is the
secret key. Similar roles are assumed in other cryptographic constructions.

Goldwasser et al. [GKPV10] initiated a study on the hardness of LWE when s is not chosen
uniformly at random. This study was motivated by the desire to achieve an entropic notion of
security that will allow to guarantee that the problem remains hard even if some information about
s is leaked. They showed that if s is sampled from a binary distribution (i.e. supported over
{0, 1}n), then LWE remains hard so long as s has sufficient entropy. In fact, sampling s from a
(possibly sparse) binary distribution is attractive in other contexts such as constructing efficient
post-quantum cryptographic objects [NIS], minimizing noise blowup in homomorphic encryption
[BGV12], classical worst-case to average-case reduction [BLP+13] and proving hardness for the
so-called Learning with Rounding (LWR) problem [BPR12, BGM+16]. Progress on understanding
entropic LWE in the binary setting was made in subsequent works [BLP+13, Mic18].

However, the question of hardness of LWE on imperfect secret distributions carries significance
beyond the binary setting. If we consider the key-leakage problem, then changing the honest key
distribution to be binary just for the sake of improving robustness against key-leakage carries a
heavy cost in the performance and security features in case no leakage occurs. An entropic hardness
result for the general uniform setting is thus a natural question. Furthermore, for a problem as
important as LWE, the mere scientific understanding of the robustness of the problem to small
changes in the prescribed distributions and parameters stands as a self-supporting goal.

Alas, it appears that current approaches provide no insight for the general setting. Existing
results can be extended beyond the binary setting so long as the norm of the vectors s is bounded,
i.e. so long as the secret distribution is contained within some small enough ball, as was made
explicit by Alwen et al. [AKPW13]. However this appeared to be an artifact of the proof technique
and it was speculated by some that a general entropic LWE result should exist. Exploring the
hardness of general entropic LWE is the goal of this work.

1.1 Our Results

We relate the hardness of Entropic LWE for arbitrary distributions to a basic property of the
distribution, specifically to how bad the distribution performs as an error correcting code against
Gaussian noise. Specifically, let S be some distribution over secrets in Znq . Recall the notion of

conditional smooth min-entropy H̃∞ and define the noise lossiness of S as

νσ(S) = H̃∞(s|s + e) = − log

(
Pr
s,e

[A∗(s + e) = s]

)
, (1)

where s is sampled from S and e is (continuous, say) Gaussian noise with parameter σ, and A∗ is
the optimal maximal likelihood decoder for s, namely A∗(y) = arg maxs Prs,e[s|y = s + e]. This
notion is a min-entropy analogue to the notion of equivocation for Shannon-entropy, and can be
seen as a guaranteed information loss of a gaussian channel (rather than average information loss).
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We advocate for noise lossiness as a new and natural measure for a distribution and show that it
allows to get a good handle on the entropic LWE question. We do this by showing that distributions
with sufficiently high noise lossiness lead to hard instances of Entropic LWE (under assumptions, see
details below). We then show that high min-entropy implies (some limited level of) noise lossiness,
which allows us to derive hardness results for general Entropic LWE. We furthermore show that
results for distributions supported inside a ball can also be derived using our technique and show
that noise lossiness of such distributions is larger than that of general distributions.1 Finally, we
show that our bounds for the general entropic setting are essentially tight. See below for details.

Noise Lossiness Implies Entropic LWE Hardness (Section 4). We show that high noise
lossiness implies entropic hardness. Our result relies on the hardness of the decision version of LWE
(with “standard” secret distribution). Whereas the variant we discussed so far is the search variant,
which asserts that finding s given (A,y) should be hard, the decision variant dLWE asserts that
it is computationally hard to even distinguish (A,y) from (A,u) where u ∈ Zmq is uniform. The
hardness of decision LWE immediately implies hardness for search LWE, and the converse is also
true but not for every noise distribution and via a reduction that incurs some cost. This is also the
case in the entropic setting. By default when we refer to (Entropic) LWE in this work, we refer to
the search version. We will mention explicitly when referring to the decision version.

Our results in this setting are as follows.

Theorem 1.1 (Main Theorem, Informal). Assume that decision LWE with dimension k, modulus
q and Gaussian noise parameter γ is hard. Let S be a distribution over Znq with νσ1(S) ≥ k log(q)+
ω(log λ) for some parameter σ1, then Entropic LWE with secret distribution S and Gaussian noise
parameter σ ≈ σ1γ

√
m is hard.

Our actual theorem is even more expressive on two aspects. First, while the above result applies
for search Entropic LWE for all values of q, but in some cases, e.g. when q is prime, it also applies
to decision Entropic LWE. Second, in the case where S is supported inside a ball, the term k log(q)
can be relaxed to roughly k log(γr) where r is the radius of the ball (this only applies to the search
version).

We note that we incur a loss in noise that depends on
√
m, i.e. depends on the number of LWE

samples. This is inherent in our proof technique, but using known statistical or computational
rerandomization results, this dependence can be replaced by dependence on n, γ.

As explained above, most of our results imply hardness for search Entropic LWE and do not
directly imply hardness for the decision version (albeit search-to-decision reductions can be applied,
as we explained below). We note that this is an artifact of the applicability of our proof technique
even in cases where the decision problem is not hard at all. We view this as a potentially useful
property which may find future applications. To illustrate, consider the setting where the distribu-
tions of s and e, as well as the modulus q, are all even. (Indeed, usually we consider the coordinates
of e to be continuous Gaussians or a discrete Gaussians over Z, but one may be interested in a
setting where they are, say, discrete Gaussian over 2Z.) In this setting, decision LWE is trivially
easy, but search LWE remains hard. Our techniques (as detailed in the technical overview below)
naturally extend to this setting and can be used to prove entropic hardness in this case as well.

1In fact, noise lossiness provides a simple intuitive explanation on why ball-bounded distributions with given
min-entropy yield harder Entropic LWE instances than general ones. This is due to the fact that packing the same
number of elements in a small ball necessarily makes it harder to go back to the point of origin once noise is added.
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In the standard regime of parameters, where e is a continuous Gaussian, we can derive the
hardness of the decision problem using known search-to-decision reductions. The most generic
version, as in e.g. [Reg05], runs in time q · poly(n) but in many cases the dependence on q can be
eliminated [Pei09, MM11]. In particular we note that in the ball-bounded setting, search-to-decision
does not incur dependence on q.

Noise-Lossiness and Entropy (Section 5). We analyze the relation between noise-lossiness
and min-entropy of a distribution both in the general setting and in the ball-bounded setting. We
derive the following bounds.

Lemma 1.2 (Noise-Lossiness of General Distributions). Let S be a general distribution over Znq ,

then νσ(S) ≥ H̃∞(s)− n log(q/σ)− 1.

Lemma 1.3 (Noise-Lossiness of Small Distributions.). Let S be a distribution over Znq which is

supported only inside a ball of radius r, then νσ(S) ≥ H̃∞(s)−
√

2π log(e) ·
√
nr/σ.

Putting these results together with our main theorem, we get general Entropic LWE hardness
whenever H̃∞(s) & k log(q) + n log(qγ

√
m/σ). In the r-ball-bounded setting we require entropy

H̃∞(s) & k log(γr) +
√

2π log(e)γ
√
nmr/σ.2 Note that if we make the very strong (yet not implau-

sible) assumption that LWE is sub-exponentially secure, then we can use complexity leveraging and
choose k to be polylogarithmic, we can choose σ to be large enough that the second term vanishes,
and we get entropic hardness even with H̃∞(s) which is polylogarithmic in the security parameter,
in particular independent of log(q).

Tightness (Sections 6 and 7). We provide two tightness results. The first one is essentially a
restatement of a bound that was shown in the Ring-LWE setting by Bolboceanu et al. [BBPS19].
It is unconditional, but requires q to have a factor of a proper size.

Theorem 1.4 (Counterexample for Entropic LWE, Informal [BBPS19]). Let n, q, σ be LWE
parameters. Then if there exists p s.t. p|q and p ≈ σ

√
n, then there exists a distribution S with

min-entropy roughly n log(q/σ), such that Entropic LWE is insecure with respect to S.

However, the above requires that q has a factor of appropriate size. One could wonder whether
one can do better for a prime q. While we do not have an explicit counterexample here, we can
show that proving such a statement (i.e. security for Entropic LWE with entropy below roughly
n log(q/σ)) cannot be done by a black-box reduction to a standard “game based” assumption.
In particular if the reduction can only access the adversary and to the distribution of secrets as
black-box, then the entropy bound n log(q/σ) applies even for prime q.

Theorem 1.5 (Barrier for Entropic LWE, Informal). Let n, q, σ be LWE parameters. Then
there is no black-box reduction from Entropic LWE with entropy � n log(q/σ) to any game-based
cryptographic assumption.

2In the ball-bounded setting, our main improvement over [AKPW13, Appendix B] is that our entropy bound is
independent of q. This is due to our use of Hermite normal form. Beyond this important difference, our flooding
method and that of [AKPW13] are asymptotically similar in the ball-bounded setting. Our method of flooding at the
source, however, is a general method that performs at least as well as the state of the art in the ball-bounded setting,
and also implies tight results in the unbounded setting.
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1.2 Technical Overview

We provide a technical overview of our main contributions.

The Lossiness Approach to Entropic LWE. The starting point of our proof is the lossiness
approach. This approach (in some small variants) was used in all existing hardness results for
Entropic LWE [GKPV10]. However, prior works were only able to use it for norm-bounded secrets.
We show a minor yet crucial modification that allows to relate the hardness of Entropic LWE to
the noise-lossiness of the noise distribution.

Fix parameters n, q, σ and recall that the adversary is given (A,y), where A is uniform, y =
sA + e (mod q), s sampled from S and e is a (continuous) Gaussian with parameter σ. The
lossiness approach replaces the uniform matrix A with an “LWE matrix” of the form: BC + F,
where B ∈ Zn×kq , C ∈ Zk×mq are uniform, and k � n,m, and where F is a matrix whose every
element is a (discrete) Gaussian with parameter γ. The decisional LWE assumption with dimension
k, modulus q and noise parameter γ asserts that BC+F is computationally indistinguishable from
a uniform matrix, and therefore the adversary should also be able to recover s when (A,y) is
generated using A = BC + F. At this point, the vector y is distributed as

y = sA + e = sBC + sF + e .

The strategies on how to continue from here diverge. The [GKPV10] approach is to say that
when s is confined inside a ball, and when e is a wide enough Gaussian, then the value sF + e is
“essentially independent” of s. This is sometimes referred to as “noise flooding” since the noise e
“floods” the value sF and minimizes its effect. This allows to apply the leftover hash lemma to
argue that sB is statistically close to a uniform s′ and obtain a new “standard” LWE instance.
The [BLP+13, Mic18] approaches can be viewed as variants of this method, where the argument
on sF + e is refined in non-trivial ways to achieve better parameters.

This type of argument cannot work for the general setting (i.e. when s is not short) since in this
case sF + e can reveal noticeable information about s. For example, if s is a multiple of some large
enough factor then the noise e can just be rounded away (indeed this will be the starting point for
our tightness result, as we explain further below).

Our approach therefore is to resort to a weaker claim. We do not try to change y into a form
of standard LWE, but instead all we show is that y loses information about s. Namely, we will
show that even information-theoretically it is not possible to recover s from (A,y). This approach
was taken, for example, by Alwen et al. [AKPW13], but they were unable to show lossiness for the
general setting. The reason, essentially, is that they also use a refined version of noise flooding, one
that did not require that e completely floods sF, only slightly perturb it. We can call it “gentle
flooding” for the purpose of this work. A similar argument was used in [DM13] to establish hardness
of LWE with uniform errors from a short interval.

We note that in all flooding methods, it is beneficial if F contains small values as much as
possible. Therefore in order to show hardness for s with as low entropy as possible, the parameter
γ is to be taken as small as possible, while still supporting the hardness of distinguishing BC + F
from uniform.

Our Approach: Gentle Flooding at the Source. Our approach can be viewed in hindsight
as a very simple modification of the lossiness / flooding approach, that results in a very clean
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statement, and the characterization of the noise lossiness as the “right” parameter for the hardness
of Entropic LWE.

We take another look at the term sF + e and recall that our goal is to use e to lose information
about s. Clearly, if e was of the form e1F, then things would be more approachable since then
we would simply have (s + e1)F, and we will simply need to argue about the lossiness of s under
additive Gaussian noise (which is exactly our notion of noise lossiness for the distribution S).
Our observation is that even though e does not have this form, the properties of the Gaussian
distribution allow to present e as e = e1F+e2, where e1, e2 are independent random variables (but
the distribution of e2 depends on F). This is easiest to analyze when e is a continuous Gaussian,
which is the approach we take in this work.3

It can be shown essentially by definition that the sum of two independent Gaussian vectors
with covariance matrices Σ1,Σ2 is a Gaussian with covariance matrix Σ1 + Σ2. It follows that if
we choose e1 to be a spherical Gaussian with parameter σ1 then e1F will have covariance matrix
σ1F

TF. Therefore if we choose e2 to be an aspherical Gaussian with covariance σI − σ1FTF, we
get that e = e1F + e2 is indeed a spherical σ Gaussian. There is an important emphasis here,
the matrix σI− σ1FTF must be a valid covariance matrix, i.e. positive semidefinite. To guarantee
this, we must set the ratio σ/σ1 to be at least the largest singular value of the matrix F. Standard
results on singular values of Gaussian matrices imply that the largest singular value is roughly√
mγ, which governs the ratio between σ1 and σ. We stress again that e1 and e2 are independent

random variables.
Once we established the decomposition of the Gaussian, we can write y as

y = sA + e = sBC + (s + e1)F + e2 .

Now, our noise lossiness term νσ1(S) = H̃∞(s|s + e1) naturally emerges. Note that y cannot
provide more information about s than the two variables (sB, s + e1). Since the former contains
only k log q bits, it follows that if the noise lossiness is sufficiently larger than k log q, then naturally
H̃∞(s|s + e1, sB) is non-trivial (we need ω(log λ) where λ is the security parameter), which implies
that finding s is information theoretically hard. Thus the hardness of Entropic (search) LWE is
established.

If in addition B can serve as an extractor (this is the case when the modulus q is prime, or
when the S is binary), then we can make a stronger claim, that sB is statistically close to uniform,
and then apply (standard) LWE again in order to obtain hardness for Entropic dLWE directly.

Finally, we notice that for norm-bounded distributions we can improve the parameters further
by using LWE in Hermite Normal Form (HNF) which has been shown to be equivalent to standard
LWE in [ACPS09]. HNF LWE allows to argue that BC + F is indistinguishable from uniform even
when the elements of B are also sampled from a Gaussian with parameter γ (same as F). Using
HNF, we can further bound the entropy loss caused by the term sB and achieve a bound that is
independent of q, and only depends on γ, r, σ. We can only apply this technique for Entropic search
LWE.

For the complete analysis and formal statement of the result, see Section 4.

Computing The Noise Lossiness. We briefly explain the intuition behind the noise lossiness
computation. The exact details require calculation and are detailed in Section 5.

3It can be shown and is by now standard that the hardness of LWE is essentially equivalent whether e is a
continuous Gaussian, discrete Gaussian, or “rounded” Gaussian [Pei10].
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For the sake of this overview, let us consider only “flat” distributions, i.e. ones that are uniform
over a set of K strings (and thus have min-entropy logK). We will provide an upper bound on the
probability Prs,e[A∗(s + e) = s] from Eq. (1), which will immediately translate to a bound on the
noise-lossiness.

For general distributions, we note that we can write

Pr
s,e

[A∗(s + e) = s] =

∫
y

Pr
s,e

[s + e = y ∧ A∗(y) = s]dy ,

where the integral is over the entire q-cube (we use integral since we use a continuous distribution
for e, but a calculation with discrete Gaussian will be very similar). Note that the expression
Prs,e[s + e = y ∧ A∗(y) = s] can be written as Prs,e[A∗(y) + e = y ∧ A∗(y) = s], which can then
be decomposed since the event A∗(y) + e = y depends only on e and the event A∗(y) = s depends
only on s (recall that y is fixed at this point). We can therefore write

Pr
s,e

[A∗(s + e) = s] =

∫
y

Pr
e

[e = y −A∗(y)] · Pr
s

[A∗(y) = s]dy .

Now, for all y it holds that Prs[A∗(y) = s] ≤ 1/K, simply since A∗(y) is a fixed value. It also
holds that Pre[e = y − A∗(y)] is bounded by the maximum value of the Gaussian mass function,
which is 1/σn. We get that

Pr
s,e

[A∗(s + e) = s] ≤ 1

Kσn

∫
y
dy =

qn

Kσn
,

and Lemma 1.2 follows.
For the setting of Lemma 1.3, recall that S is supported only over r-norm-bounded vectors. Note

that the analysis above is correct up to and including the conclusion that Prs[A∗(y) = s] ≤ 1/K.
Furthermore, A∗(y) must return a value in the support of S, that is small. We therefore remain
with the challenge of bounding

∫
y Pre[e = y−A∗(y)]dy, when we are guaranteed that ‖A∗(y)‖ ≤ r.

We can deduce that this can only induce a minor perturbation to the e Gaussian. Using Gaussian
tail bounds the result follows.

Tightness. The result of [BBPS19] (Theorem 1.4 above) is quite straightforward in our setting
(they showed a ring variant which is somewhat more involved). The idea to choose S to be uniform
over the set of all vectors that are multiples of p (or in the [BBPS19] terminology, uniform over an
ideal dividing the ideal q). This distribution has min-entropy n log(q/p) ≈ n log(q/σ) (since p ≈ σ),
and it clearly leads to an insecure LWE instance since the instance can be taken modulo p in order
to recover the noise, and then once the noise is removed the secret can easily be recovered.

The above argument seems to “unfairly” rely on the structure of the modulus q, and one
could hope that for prime q, which has no factors, a better result can be achieved. We extend a
methodology due to Wichs [Wic13] to show that if such a result exists then it will require non-
black-box use of the adversary and/or the sampler for the distribution S. Consider a black-box
reduction that given access to an entropic LWE adversary A and a sampler for S (we overload the
notation and denote the sampler by S as well), manages to solve some hard problem, e.g. solve a
standard LWE instance.

We show that it is possible to efficiently (jointly) simulate A,S, such that in the eyes of a
reduction they are indistinguishable from a real high-entropy distribution S and an adversary A
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that solves Entropic LWE on it, thus leading to an efficient unconditional algorithm for said hard
problem. The basic idea relies on the natural intuition that it is hard to generate a “valid” LWE
instance without knowing the value of s that is being used. While this intuition is false in many
situations, we show that in the entropic setting with black-box reductions it can be made formal.

Specifically, consider S that is just a uniform distribution over a set of K randomly chosen
strings (note that this distribution does not have an efficient sampler, but a black-box reduction
is required to work in such a setting as well, and we will show how to simulate S efficiently).
The adversary A, upon receiving an instance (A,y) first checks that A is full rank (otherwise
return ⊥), and if so it brute-forces s out of y by trying all possible s∗ in the support of S, and if
there is one for which y − s∗A (mod q) is short (i.e. of the length that we expect from noise with
Gaussian parameter σ), then return a random such s∗ as answer (otherwise return ⊥). This is a
valid adversary for Entropic LWE and therefore it should allow the reduction to solve the hard
problem.

Now, let us show how to simulate S,A efficiently. The idea is to rely on the intuition that the
reduction cannot generate valid LWE instances with values of S that it does not know, and since the
distribution is sparse, the reduction cannot generate strings in the support of S in any way except
calling the S sampler. Furthermore, since the reduction can only make polynomially many queries
to the sampler, there are only polynomially many options for s for which it can generate valid LWE
instances, and our efficient implementation of A can just check these polynomially many options.
(Note that throughout this intuitive outline we keep referring to valid Entropic LWE instances, the
above argument actually fails without a proper notion of validity as will be explained below.)

Concretely, we will simulate the adversary using a stateful procedure, i.e. one that keeps state.
However, in the eyes of the reduction this will simulate the original stateless adversary and therefore
will suffice for our argument. We will simulate S using “lazy sampling”. Whenever the reduction
makes a call to S, we will just sample a new random string s, and save the new sample to its
internal state. When a query (A,y) to A is made, then we first check that A is indeed full rank
(otherwise return ⊥), and if it is the case, go over all vectors s∗ that we generated so far (and
are stored in the state), and check whether y− s∗A (mod q) is short (in the same sense as above,
i.e. of the length that we expect from noise with Gaussian parameter σ). If it is the case then a
random such s∗ is returned as the Entropic LWE answer. If the scan did not reveal any adequate
candidate, then return ⊥.

We want to argue that the above simulates the stateless process. The first step is to show
that if there is no s∗ in the state and thus our simulated adversary returns ⊥, then the inefficient
adversary would also have returned ⊥ with all but negligible probability. Secondly, noticing that
when our simulated adversary does return a value s∗, this s∗ is a value that the reduction already
received as a response to a S query, and only one such s∗ exists. In fact, both of these concerns
boil down to properly defining a notion of validity of the Entropic LWE instance that will prevent
both of these concerns.

To this end, we notice that the original inefficient adversary return a non-⊥ value only on
instances where A is full rank, and there exists a short e∗ and value s∗ in the support of S such
that y = s∗A + e∗. We will prove that it is not possible to find an instance which is valid for s
in the support of S which has not been seen by the reduction. This will address both concerns
and can be proven since the unseen elements of S are just randomly sampled strings, so we can
think of the vectors as sampled after the matrix A is determined. The probability of a random
vector s to be s.t. y − sA is σ-short, where y is arbitrary and A is full rank, is roughly (σ/q)n.
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This translates to the cardinality K of S being as large as (roughly) n log(q/σ) and still allowing
to apply the union bound. The result thus follows.

Maybe somewhat interestingly, while our security proofs for entropic LWE are technically sim-
ilar to converse coding theorems [Sha48, W+59], our barrier result resembles the random coding
arguments used to prove the coding theorem [Sha48, Sha49].
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2 Preliminaries

We will denote the security parameter by λ. We say a function ν(λ) is negligible if ν(λ) ∈ λ−ω(1).
We will generally denote row vectors by x and column vectors by x>. We will denote the L2 norm

of a vector x by ‖x‖ =
√∑

i x
2
i and the L∞ norm by ‖x‖∞ = maxi |xi|.

We denote by Tq = R/qZ be the real torus of scale q. We can embed Zq = Z/qZ into Tq in the
natural way. Tq is an abelian group and therefore a Z-algebra. Thus multiplication of vectors from
Tnq with Z-matrices is well-defined. Tq is however not a Zq-algebra. We will represent Tq elements
by their central residue class representation in [−q/2, q/2).

For a continuous random variable x, we will denote the probability-density function of x by
px(·). We will denote the probability density of x conditioned on an event E by px|E(·). Let
X,Y be two discrete random variables defined on a common support X . We define the statistical
distance between X and Y as ∆(X,Y ) =

∑
x∈X |Pr[X = x]−Pr[Y = x]|. Likewise, if X and Y are

two continuous random variables defined on a measurable set X , we define the statistical distance
between X and Y as ∆(X,Y ) =

∫
x∈X |pX(x)− pY (x)|.

Random Matrices Let p be a prime modulus. Let A←$ Zn×mp be chosen uniformly at random.
Then the probability that A is not invertible (i.e. does not have an invertible column-submatrix)

Pr[A not invertible] = 1−
n−1∏
i=0

(1− pi−m) ≤ pn−m.

For an arbitrary modulus q, a matrix A is invertible if and only if it is invertible modulo all
prime factors pi of q. As we can bound the number of prime factors of q by log(q), we get for an
A←$ Zn×mp that

Pr[A not invertible] ≤ log(q) · 2n−m.

2.1 Min-Entropy

Let x be a discrete random variable supported on a set X and z be a possibly (continuous) random
variable supported on a (measurable) set Z. The conditional min-entropy H̃∞(x|z) of x given z is
defined by

H̃∞(x|z) = − log

(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]

])
.
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In the case that z is continuous, this becomes

H̃∞(x|z) = − log

(∫
z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,

where pz(·) is the probability density of z.

2.2 Leftover Hashing

We recall the generalized leftover hash lemma [DORS08, Reg05].

Lemma 2.1. Let q be a modulus and let n, k be integers. Let s be a random variable defined on Znq
and let B←$ Zn×kq be chosen uniformly random. Furthermore let Y be a random-variable (possibly)
correlated with s. Then, given that either q is prime or s is supported on {−1, 0, 1}n it holds that

∆((B, sB, Y ), (B,u, Y )) ≤
√
qk · 2−H̃∞(s|Y ).

The proof of the LHL relies on the fact the the function HB : X → Zkq given by x 7→ sB is a
universal hash function. This can either be achieved by choosing q to be prime or restricting the
domain X ⊆ Znq appropriately, e.g. to {−1, 0, 1}n.

2.3 Gaussians

Continuous Gaussians A matrix Σ ∈ Rn×n is called positive definite, if it holds for every
x ∈ Rn\{0} that xΣx> > 0. For every positive definite matrix Σ there exists a unique positive
definite matrix

√
Σ such that (

√
Σ)2 = Σ.

For a parameter σ > 0 define the n-dimensional gaussian function ρσ : Rn → (0, 1] by

ρσ(x) = e−π‖x‖
2/σ2

.

For a positive definite matrix Σ ∈ Rn×n, define the function ρ√Σ : Rn → (0, 1] by

ρ√Σ(x) := e−πxΣ−1x> .

For a scalar σ > 0, we will define

ρσ(x) := ρσ·I(x) = e−π‖x‖
2/σ2

.

The total measure of ρ√Σ over Rn is

ρ√Σ(Rn) =

∫
Rn
ρ√Σ(x)dx =

√
det(Σ).

In the scalar case this becomes

ρσ(Rn) =

∫
Rn
ρσ(x)dx = σn.

Normalizing ρ√Σ by ρ√Σ(Rn) yields the probability density for the continuous gaussian distribution
D√Σ over Rn.
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For a discrete set S ⊆ Rn we define ρ√Σ(S) by

ρ√Σ(S) :=
∑
s∈S

ρ√Σ(s).

In particular, for a integer q we have

ρ√Σ(qZn) =
∑

z∈qZn
ρ√Σ(z).

For a gaussian x ∼ Dσ we get the tail-bound

Pr[|x| ≥ t] ≤ 2 · e−
t2

2σ2 .

As a simple consequence we get Pr[|x| ≥ (log(λ)) · σ] ≤ negl(λ).

Discrete Gaussians We say a random variable x defined on Z follows the discrete gaussian
distribution DZ,σ for a parameter σ > 0, if the probability mass function of x is given by

Pr[x = x′] =
ρσ(x′)

ρσ(Z)

for every x′ ∈ Z.

Modular Gaussians For a modulus q, we also define the q-periodic gaussian function ρ̃q,
√

Σ : by

ρ̃q,
√

Σ(x) :=
∑

z∈qZn
ρq,
√

Σ(x− z).

We define ρ̃q,
√

Σ(Tnq ) by

ρ̃q,
√

Σ(Tnq ) := ρ̃q,
√

Σ([−q/2, q/2)n) =

∫
[−q/2,q/2)n

ρ̃q,
√

Σ(x)dx = ρ√Σ(Rn).

Consequently, normalizing ρ̃q,
√

Σ by ρ̃q,
√

Σ(Tnq ) yields a probability density on Tnq . We call the
corresponding distribution D√Σ mod q a modular gaussian. A x ∼ D√Σ mod q can be sampled
by sampling and x′ ←$ D√Σ and computing x← x′ mod q.

In order to prove our strong converse coding theorems, we need various upper bounds for the
periodic gaussian function. We will use the following variant of the smoothing lemma of Micciancio
and Regev [MR04]4.

Lemma 2.2 (Smoothing Lemma [MR04]). Let ε > 0. Given that 1
σ ≥

√
ln(2n(1+1/ε))

π · 1q , then it
holds that

ρσ(qZn\{0}) ≤ ε.
4We use the smoothing lemma with the parameter s = 1/σ and the lattice Λ = 1

q
Zn. Note that for this lattice it

holds that λn = 1/q.
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Lemma 2.3. The periodic gaussian function ρ̃q,σ assumes its maximum at q ·Zn. In particular, it
holds for all x ∈ Rn that ρ̃q,σ(x) ≤ ρ̃q,σ(0).

Proof. We can write ρ̃q,σ as
ρ̃q,σ(x) = fx(qZn),

where fx(z) = ρσ(z− x). The Poisson summation formula allows us to express fx(qZn) by

fx(qZn) = det(
1

q
Zn) · f̂x(

1

q
Zn) =

1

qn
f̂x(

1

q
Zn)

Since f̂x(ω) = e−2πi·〈x,ω〉σnρ1/σ(ω), we can write fx(qZn) as

fx(qZn) =

(
σ

q

)n
·
∑

ω∈ 1
q
Zn
e−2πi·〈x,ω〉ρ1/σ(ω),

we can bound

ρ̃q,σ(x) = |ρ̃q,σ(x)|
= |fx(qZn)|

=

∣∣∣∣∣∣∣
(
σ

q

)n
·
∑

ω∈ 1
q
Zn
e−2πi·〈x,ω〉ρ1/σ(ω)

∣∣∣∣∣∣∣
≤
(
σ

q

)n
·
∑

ω∈ 1
q
Zn
|e−2πi·〈x,ω〉| · |ρ1/σ(ω)|

=

(
σ

q

)n
·
∑

ω∈ 1
q
Zn
ρ1/σ(ω)

= f0(qZn)

= ρ̃q,σ(0)

The first equality holds as ρ̃q,σ(x) > 0 and the inequality holds by an application of the triangle
inequality. This concludes the proof.

Lemma 2.4. If q
σ ≥

√
ln(4n)
π , then it holds for all x ∈ Rn that

ρ̃q,σ(x) ≤ 2.

Proof. Choosing ε = 1 in Lemma 2.2 yields

ρσ(qZn\{0}) = 1

as 1
σ ≥

√
ln(2n(1+1/ε))

π · 1q =

√
ln(4n)
π · 1q . Consequently, we obtain

ρ̂q,σ(0) =
∑

z∈qZn
ρ̂σ(z)

= ρσ1(qZn)

= 1 + ρσ1(qZn\{0})
≤ 2.

12



The claim follows from the fact above.

We will use the following estimate for shifted gaussians.

Lemma 2.5. Let σ2 > σ1 > 0. Then it holds for all x ∈ Rn and t ∈ Rn that

ρσ1(x− t) ≤ e
π
‖t‖2

σ22−σ
2
1 · ρσ2(x).

Moreover, the same holds for the q-periodic gaussian function ρ̂qZn,σ1, i.e.

ρ̂qZn,σ1(x− t) ≤ e
π
‖t‖2

σ22−σ
2
1 · ρ̂qZn,σ2(x).

Proof. By a routine calculation,

ρσ1(x− t) ≤ e
π
‖t‖2

σ22−σ
2
1 · ρσ2(x)

is equivalent to
‖x− t‖2

σ21
− ‖x‖

2

σ22
+
‖t‖2

σ22 − σ21
≥ 0.

Now it holds that

‖x− t‖2

σ21
− ‖x‖

2

σ22
+
‖t‖2

σ22 − σ21
=
‖x‖2

σ21
− 2

σ21
〈x, t〉+

‖t‖2

σ21
− ‖x‖

2

σ22
+
‖t‖2

σ22 − σ21

=
σ22 − σ21
σ21σ

2
2

‖x‖2 − 2

σ21
〈x, t〉+

σ22
σ21(σ22 − σ21)

‖t‖2

=
1

σ21

∥∥∥∥∥√1− (σ1/σ2)2x−
1√

1− (σ1/σ2)2
t

∥∥∥∥∥
2

≥ 0.

To prove the second statement, note that

ρ̂qZn,σ1(x− t) =
∑

z∈qZn
ρσ1(x− t− z)

≤
∑

z∈qZn
e
π
‖t‖2

σ22−σ
2
1 · ρσ2(x− z)

= e
π
‖t‖2

σ22−σ
2
1 · ρ̂qZn,σ2(x),

which concludes the proof.
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2.4 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [Reg05]. The search problem
LWE(n,m, q, χ), for n,m, q ∈ N and for a distribution χ supported over the torus Tq is to find s given
(A, sA+e), where A←$ Zn×mq is chosen uniformly random and e←$ χ

m is chosen according to χm.
The decisional version dLWE(n,m, q, χ) asks to distinguish between the distributions (A, sA + e)
and (A,u + e), where A, s and e are as in the search version and u ←$ Zmq is chosen uniformly
random. We also consider the hardness of solving dLWE for any m = poly(n log q). This problem
is denoted dLWE(n, q, χ). The matrix version of this problem asks to distinguish (A,S · A + E)
from (A,U), where S←$ Zk×nq , E←$ χ

k×m and U← Zk×mq . The hardness of the matrix version
for any k = poly(n) can be established from dLWEn,m,q,χ via a routine hybrid-argument. Moreover,
Applebaum et al. [ACPS09] showed that if the error-distribution χ is supported on Zq, then the
matrix S can also be chosen from χk×m without affecting the hardness of the problem.

As shown in [Reg05], the LWE(n, q, χ) problem with χ being a continuous Gaussian distribution
with parameter σ = αq ≥ 2

√
n is at least as hard as approximating the shortest independent

vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. This
is proven using a quantum reduction. Classical reductions (to a slightly different problem) exist as
well [Pei09, BLP+13] but with somewhat worse parameters. The best known (classical or quantum)

algorithms for these problems run in time 2Õ(n/ log γ), and in particular they are conjectured to be
intractable for γ = poly(n).

Regev also provided a search-to-decision reduction which bases the hardness of the decisional
problem dLWE(n, q, χ) on the search version LWE(n, q, χ) whenever q is prime of polynomial size.
This reduction has been generalized to more general classes of moduli [Pei09, BLP+13]. Moreover,
there exists a sample preserving reduction which [MM11] which bases the hardness of dLWE(n,m, q, χ)
on LWE(n,m, q, χ) for certain moduli q without affecting the number of samples m.

Finally, Peikert [Pei10] provided a randomized rounding algorithm which allows to base the
hardness of LWE(n,m, q,DZ,σ′) (i.e. LWE with a discrete gaussian error DZ,σ′) on LWE(n,m, q,Dσ)
(continuous gaussian error), where σ′ is only slightly larger than σ.

2.5 Entropic LWE

We will now consider LWE with entropic secrets, entropic LWE for short. In this variant, we allow
the distribution of secrets S to be chosen from a family of distributions S̄ = {Si}i. This captures
the idea the distribution of secrets can be worst-case from a certain family.

Definition 2.6 (Entropic LWE). Let q = q(λ) be a modulus and n,m = poly(λ). Let χ be an
error-distribution on Tq. Let S̄ = S(λ, q, n,m) be a family of distributions on Znq . We say that
the search problem ent-LWE(q, n,m, S̄, χ) is hard, if it holds for every PPT adversary A and every
S ∈ S̄ that

Pr[A(1λ,A, s ·A + e) = s] ≤ negl(λ),

where A←$ Zm×nq , s←$ S and e←$ χ
m. Likewise, we say that the decisional problem ent-dLWE(q, n,m, S̄, χ)

is hard, if it holds for every PPT distinguisher D and every S ∈ S̄ that

|Pr[D(1λ,A, sA + e) = 1]− Pr[D(1λ,u + e) = 1]| ≤ negl(λ),

where A←$ Zm×nq , s←$ S, e←$ χ
m and u←$ Zmq .
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3 Probability-Theoretic Tools

3.1 Singular Values of Discrete Gaussian Matrices

Consider a real valued matrix A ∈ Rn×m, assume for convenience that m ≥ n. The singular values
of A are the square roots of the eigenvalues of the positive semidefinite (PSD) matrix AA>. They
are denoted σ1(A) ≥ · · · ≥ σn(A) ≥ 0. The spectral norm of A is σ1(A), and we will also denote
it by σA. It holds that

σA = σ1(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖

.

We will be interested in the of discrete Gaussian matrices.

Proposition 3.1 ([MP12, Lemma 2.8, 2.9]). Let F ∼ Dn×m
Z,γ , assume for convenience that m ≥ n.

Then with all but 2−m probability it holds that σF ≤ γ · C ·
√
m, where C is a global constant.

3.2 Decomposition Theorem for Continuous Gaussians

The following proposition is an immediate corollary of the properties of (continuous) Gaussian
vectors. We provide a proof for the sake of completeness.

Proposition 3.2. Let F ∈ Zn×m be an arbitrary matrix with spectral norm σF . Let σ, σ1 > 0 be
s.t. σ > σ1 · σF . Let e1 ∼ Dn

σ1 and let e2 ∼ D√Σ for Σ = σ2I− σ21F>F. Then the random variable
e = e1F + e2 is distributed according to Dm

σ .

Proof. First note that Σ is positive definite: It holds for any x ∈ Rm\{0} that

xΣx> = σ2‖x‖2 − σ21‖xF‖2 ≥ σ2‖x‖ − σ2σ2F‖x‖2 ≥ (σ2 − σ21σ2F) · ‖x‖2 > 0,

as σ > σ1 · σF. Since e1, e2 are independent Gaussian vectors, they are also jointly Gaussian,
and therefore e is also a Gaussian vector. Since e1, e2 have expectation 0, then so does e. The
covariance matrix of e is given by a direct calculation, recalling that e1, e2 are independent:

E[e>e] = E[F>e>eF] + E[e>2 e2]

= F>σ21IF + Σ

= σ21F
>F + σ2I− σ21F>F

= σ2I ,

and the statement follows.

4 Hardness of Entropic LWE with Gaussian Noise

In this Section we will establish our main result, the hardness of entropic search LWE with contin-
uous gaussian noise. Using standard techniques, we can conclude that entropic search LWE with
discrete gaussian noise is also hard. Finally for suitable moduli a search-to-decision reduction can
be used to establish the hardness of entropic decisional LWE.
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Theorem 4.1. Let C be the global constant from Proposition 3.1. Let q = q(λ) be a modulus and
n,m = poly(λ) where m ≥ n, and let r, γ, σ1 > 0. Let s be a random variable on Znq distributed
according to some distribution S. Let e1 ∼ Dσ1 mod q be an error term. Assume that s is r-
bounded, where we assume that r = q if no bound for s is known. Further assume that

H̃∞(s|s + e1) ≥ k · log(min{2C · γ ·
√
nr, q}) + ω(log(λ))

Let σ > C ·
√
m · γ · σ1. Then the search problem ent-LWE(q, n,m,S, Dσ) is hard, provided that

dLWE(q, k,DZ,γ) is hard.
Furthermore, if H̃∞(s|s + e1) ≥ k · log(q) +ω(log(λ)) and we have that either q is prime or s ∈

{0, 1}n, then the decisional problem ent-dLWE(q, n,m,S, Dσ) is hard, provided that dLWE(q, k,DZ,γ)
and dLWE(q, k,m,Dσ) are hard.

Proof. Let A be a search adversary against ent-LWE(q, n,m,S, Dσ). Throughout this proof, as in
the theorem statement, C is the global constant from Proposition 3.1. Let W be a distribution on
Zn×kq , which depending on the setting will either be the uniform distribution on Zn×kq or a discrete

gaussian distribution Dn×k
Z,γ . Consider the following hybrid LWE-distributions.

• H0:

– s←$ S
– A←$ Zn×mq

– e←$ D
m
σ

– Output (A, sA + e)

• H1:

– s←$ S
– B←$ W, C←$ Zk×mq , F←$ D

n×m
Z,γ

– A← B ·C + F

– e←$ D
m
σ

– Output (A, sA + e)

• H2:

– s←$ S
– B←$ W, C←$ Zk×mq , F←$ D

n×m
Z,γ

– If ‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m output ⊥

– A← B ·C + F

– e←$ D
m
σ

– Output (A, sA + e)

• H3:

– s←$ S
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– B←$ W, C←$ Zk×mq , F←$ D
n×m
Z,γ

– If ‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m output ⊥

– A← B ·C + F

– Set Σ← σ2I− σ21FTF

– e1 ←$ D
n
σ , e2 ←$ D

m√
Σ

– e← e1F + e2

– Output (A, sA + e)

First note that H0 is identical to the ent-LWE(q, n,m,S, Dσ)-experiment.
Next, it follows directly by the hardness of dLWE(q, k,DZ,γ) thatH0 andH1 are computationally

indistinguishable. Specifically, if W is the uniform distribution on Zn×kq it follows by the standard

form of dLWE(q, k,DZ,γ), whereas if W is Dn×k
Z,γ we use the Hermite form of dLWE(q, k,DZ,γ).

We claim that H1 and H2 are statistically close. To see this, note that conditioned on ‖B‖ ≤
C · γ ·

√
n and ‖F‖ ≤ C · γ ·

√
m the two experiments are identically distributed. Thus we can

bound the statistical distance between H1 and H2 by Pr[‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m]. As

B ∼ Dn×k
Z,γ , it holds by Proposition 3.1 that ‖B‖ ≤ C ·γ ·

√
n except with probability 2−n. Likewise,

as F ∼ Dn×m
Z,γ , it also holds by Proposition 3.1 that ‖F‖ ≤ C · γ ·

√
m except with probability 2−m.

Thus, a union bound yields

Pr[‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m] ≤ 2−n + 2−m ≤ 2 · 2−n,

i.e. the statistical distance between H1 and H2 is at most 2 · 2−n.
Finally, we claim that H2 and H3 are identically distributed. As ‖F‖ ≤ C · γ ·

√
m and

σ > C ·
√
m · γ · σ1, Proposition 3.2 yields that the distribution of e1F + e2 is exactly Dm

σ and the
claim follows.

We will now show that it holds for any search adversary A that if Pr[A(sA + e) = s] < negl(λ)
where (A, sA + e) ←$ H3. Consequently, by the above we can then argue that the same holds if
(A, sA + e)←$ H0, which means that search problem ent-LWE(q, n,m,S, Dσ) is hard, concluding
the proof for the first statement of the theorem. To do so, we will bound the conditional min-
entropy of s given A and sA + e1F + e2. We first observe that we can compute y = sA + e1F + e2
given sB ∈ Zkq , s + e1 ∈ Tnq and e2 ∈ Rm, as well as the (fixed) matrices C ∈ Zk×mq and F ∈ Zn×m.
It holds that

sA + e1F + e2 = sBC + sF + e1F + e2

= (sB)C + (s + e1)F + e2.

Assume that we can describe sB using ` bits. We can then bound

H̃∞(s|A, sA + e) ≥ H̃∞(s|B,C,F, sB, s + e1, e2)

= H̃∞(s|sB, s + e1)

≥ H̃∞(s|s + e1)− `

where the equality follows from the fact that e2 is independent of everything else and the second
inequality follows from the entropy chain-rule. We will now distinguish two cases, depending on
whether s is short or not.
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1. In the first case, assume that W is the discrete gaussian distribution Dn×k
Z,γ , thus it holds

that ‖B‖ ≤ C · γ ·
√
n except with negligible probability. Moreover, assume that we have

a bound ‖s‖ ≤ r. Then it holds that ‖sB‖ ≤ C · γ ·
√
nr. We can bound the number of

z ∈ Zk with ‖z‖ ≤ C · γ ·
√
nr by (2C · γ ·

√
nr)k. Consequently, we can describe sB using

` = k · log(2C · γ ·
√
nr) bits.

2. If we have no bound on ‖s‖, we can generically describe sB using ` = k ·log(q) bits as sB ∈ Zkq .

As by assumption we have that

H̃∞(s|s + e1) ≥ k · log(min{2C · γ ·
√
nr, q}) + ω(log(λ)),

it follows that

Pr[A(sA + e) = s] ≤ 2−H̃∞(s|A,sA+e)

≤ 2−H̃∞(s|s+e1)+`

≤ 2−H̃∞(s|s+e1)+k·log(min{2C·γ·
√
nr,q})

≤ 2−ω(log(λ)),

which is negligible.This concludes the proof of the first part of the statement.
To prove the second part of the statement, consider the following additional hybrids, where we

will set W to be the uniform distribution on Zn×kq .

• H4:

– s←$ S
– s∗ ←$ Zkq
– B←$ Zn×kq , C←$ Zk×mq , F←$ D

n×m
Z,γ

– If ‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m output ⊥

– A← B ·C + F

– Set Σ← σ2I− σ21FTF

– e1 ←$ D
n
σ , e2 ←$ D

m√
Σ

– e← e1F + e2

– Output (A, s∗C + (s + e1)F + e2)

• H5:

– s←$ S
– s∗ ←$ Zkq
– B←$ Zn×kq , C←$ Zk×mq , F←$ D

n×m
Z,γ

– If ‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m output ⊥

– A← B ·C + F

– e←$ D
m
σ
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– Output (A, s∗C + sF + e)

We will now show that H3 and H4 are statistically close via the leftover hash lemma. Note
that the only difference between H3 and H4 is that in H4 we have replaced sB by a uniformly
random s∗. Moreover, the only other term depending on s is s + e1. Consequently, we can bound
the statistical distance between H3 and H4 by

∆(H3,H4) ≤ ∆((B, sB, s + e1), (B, s
∗, s + e1))

≤
√
qk · 2−H̃∞(s|s+e1)

≤
√

2k·log(q) · 2−k·log(q)+−ω(log(λ))

= 2−ω(log(λ)),

which is negligible. The second inequality follows by the generalized leftover hash lemma, whereas
the third inequality follows from the assumption H̃∞(s|s + e1) ≥ k · log(q) + ω(log(λ)). Note that
we can apply the leftover hash lemma whenever q is prime or s is binary.

Next, we claim that H4 and H5 are identically distributed. To see this, note that all we did
was reversing the decomposition of e = e1F + e2. Thus, H4 and H5 are identically distributed by
the same argument as H2 and H3 are identically distributed.

Now assume there was a PPT distinguisher D which distinguishes ent-dLWE with non-negligible
advantage. By the above argument, such a distinguisher must also have non-negligible advantage
in distinguishing (A,y) from (A,u + e), where (A,y)←$ H5, u←$ Zmq and e←$ Dσ. From such
as distinguisher we can construct a distinguisher D′ against dLWE(q, k,m,Dσ) as follows. D′ gets
as input a matrix C ∈ Zk×mq and a vector z ∈ Zmq . D′ proceeds as follows:

• s←$ S

• B←$ D
n×k
Z,γ , F←$ D

n×m
Z,γ

• If ‖B‖ > C · γ ·
√
n or ‖F‖ > C · γ ·

√
m output ⊥

• A← B ·C + F

• y = z + sF

• Output D(A, )

We claim that D′ has the same advantage as D. First consider the case that the input of D′ is
of the form (C, z = s∗C + e), where D←$ Zk×mq , s∗ ←$ Zkq and e←$ Dσ. Then it holds that

y = z + sF = s∗C + sF + e,

i.e. (A,y) is distributed according to H5.
On the other hand, if the input of D′ is distributed according to (C, z = u + e), then it holds

that y = z + sF ≡ u′ + e for a uniformly random u′ ←$ Zmq . Consequently (A,y) has the same
distribution as (A,u + e), where (A,y)←$ H5, u←$ Zmq and e←$ Dσ. We conclude that D′ has
the same advantage as D, which contradicts the hardness of dLWE(q, k,m,Dσ). This concludes the
proof.
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5 Noise-Lossiness for Modular Gaussians

In this Section, we will compute the noise lossiness for general high-minentropy distributions. We
further show that considerable improvements can be achieved when considering short distributions.
Our Lemmas in this Section can be seen as strong converse coding theorems for gaussian channels.
I.e. if a distribution codes above a certain information rate, then information must be lost and
noise lossiness quantifies how much information is lost. The following lemma will allow us to bound
H̃∞(s|s + e) by suitably bounding maxs∗ pe(y − s∗).

Lemma 5.1. Let q ∈ N be a modulus and fix n,m ∈ N with m > n. Let s be a random variable on
Zkq with min-entropy H̃∞(s). Let χ be a noise distribution over Rn and let e ∼ χ. Then it holds
that

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
in the case that χ is continuous and

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∑
y

max
s∗

Pr
e

[e = y − s∗]

)

in the case that χ is discrete. Moreover, if s is a flat distribution then equality holds.

Proof. The lemma follows from the following derivation in the continuous case. The discrete case
follows analogously.

H̃∞(s|s + e) = − log

(
E
y

[max
s∗∈S

Pr
s,e

[s = s∗|s + e = y]]

)
= − log

(∫
y
ps+e(y) ·max

s∗
Pr
s,e

[s = s∗|s + e = y]dy

)
= − log

(∫
y

max
s∗

ps,s+e(s∗,y)dy

)

= − log

∫
y

max
s∗

ps+e|s=s∗(y) · Pr[s = s∗]︸ ︷︷ ︸
≤2−H̃∞(s)

dy


≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
.

To see that equality holds for flat distributions, note that in this case we have Pr[s = s∗] =

2−H̃∞(s).

5.1 General High Entropy Secrets

We first turn to the case of general high-entropy secrets and prove the following lemma.

Lemma 5.2. Let n be an integer, let q be a modulus and σ1 be a parameter for a gaussian. Assume
that

q

σ1
≥
√

ln(4n)

π
.
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Let s be a random variable on Znq and e1 ∼ Dσ1 mod q. Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s)− n · log(q/σ1)− 1

We remark that the requirement q
σ1
≥
√

ln(4n)
π is made for technical reasons, but we restrict

ourselves to keep the proof simple. We also remark that this condition is essentially trivially fulfilled
by interesting parameter choices.

We can instantiate Theorem 4.1 with Lemma 5.2 obtaining the following corollary.

Corollary 5.3. Let C be a global constant. Let q = q(λ) be a modulus and let n,m, k = poly(λ). Let
γ, σ1 > 0. Assume that S is a distribution on Znq with H̃∞(s) > k · log(q)+n · log(q/σ1)+ω(log(λ)).
Now let σ > C ·

√
m · γσ1. Then ent-LWE(q, n,m,S, Dσ) is hard, provided that dLWE(q, k,DZ,γ) is

hard.

of Lemma 5.2. It holds that∫
y

max
s∗

pe(y − s∗)dy =
1

ρσ1(Rn)

∫
y

max
s∗

ρ̂qZn,σ1(y − s∗)dy

≤ 1

ρσ1(Rn)
·
∫

y
2dy

= 2 · qn

ρσ1(Rn)

= 2 · q
n

σn1
,

where the ρ̂qZn,σ1(y− s∗) ≤ 2 follows by Lemma 2.4 as q
σ1
≥
√

ln(4n)
π . We can conclude by Lemma

5.1 that

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
≥ H̃∞(s)− n · log(q/σ1)− 1.

5.2 Short Secrets

We will now turn to the case where the secret has bounded norm.

Lemma 5.4. Let n be an integer, let q be a modulus and σ1 be a parameter for a gaussian. Assume
that s is a random-variable on Znq such that ‖s‖ ≤ r for a parameter r = r(λ). Let e1 ∼ Dσ1 mod q
Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s)−
√

2πn · r
σ1

log(e).

In particular, if σ1 >
√
n ·r, then H̃∞(s|s+e1) ≥ H̃∞(s)−π log(e). We can instantiate Theorem

4.1 with Lemma 5.4 obtaining the following corollary.
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Corollary 5.5. Let C be a global constant. Let q = q(λ) be a modulus and let n,m, k = poly(λ).
Let γ = γ(λ) > 0 and σ1 = σ1(λ) > 0. Assume that S is a r-bounded distribution with H̃∞(s) >
k·log(2C·γ·σ1)+

√
2πn· rσ1 log(e)+ω(log(λ)). Now let σ > C·

√
mσ1·γ. Then ent-LWE(q, n,m,S, Dσ)

is hard, provided that dLWE(q, k,DZ,γ) is hard.

of Lemma 5.4. Fix some σ2 > σ1. Since it holds that ‖s‖ ≤ r, it holds that∫
y

max
s∗

pe(y − s∗)dy =
1

ρσ1(Rn)

∫
y

max
s∗

ρ̂qZn,σ1(y − s∗)dy

≤ 1

ρσ1(Rn)

∫
y

max
s∗

e
π
‖s∗‖2

σ22−σ
2
1 · ρ̂qZn,σ2(y)dy

≤ 1

ρσ1(Rn)
· e
π r2

σ22−σ
2
1 ·
∫

y
ρ̂qZn,σ2(y)dy

= e
π r2

σ22−σ
2
1 · ρσ2(Rn)

ρσ1(Rn)

= e
π r2

σ22−σ
2
1 ·
(
σ2
σ1

)n
Now, setting σ2 = σ1 ·

√
1 + η we get that∫

y
max

s∗
pe(y − s∗)dy ≤ e

π r2

σ22−σ
2
1 ·
(
σ2
σ1

)n
= e

π r2

ησ21 · (1 + η)n/2

≤ e
π r2

ησ21
+nη

2

By Lemma 5.1, we can conclude that

H̃∞(s|s + e1) ≥ H̃∞(s)−
(
π
r2

ησ21
+
nη

2

)
log(e).

Recall that η is still a free parameter. This expression is minimized by choosing η =
√

2π
n

r
σ1

, which

yields

H̃∞(s|s + e1) ≥ H̃∞(s)−
√

2πn · r
σ1

log(e).

6 Tightness of the Result

In this Section, we will show that for general moduli and general min-entropy distributions our
result is tight up to polynomial factors.

For a modulus q and a noise parameter σ, we will provide an example of a distribution s with
min-entropy ≈ n · log(q/σ), such that ent-LWE(q, n,m,X , χ) is easy. For this counter-example, the
choice of the modulus q is critical.
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Lemma 6.1. Let q = q(λ) be a modulus such that q has a divisor p of size |p| > 2B+ 1, let n,m =
poly(λ) and let χ be a B-bounded error-distribution. Define the distribution S to be the uniform
distribution on p ·Znq . Then there exists an efficient algorithm A that solves ent-LWE(q, n,m,S, χ)

Corollary 6.2. There exist moduli q and distributions S with min-entropy ≥ n · (log(q/σ) −
log(log(λ)))) such that ent-LWE(q, n,m,S, Dσ) is easy.

The corollary follows from Lemma 6.1 by choosing p such that p = 2 log(λ)·σ+1 and noting that
a gaussian of parameter σ is log(λ)·σ bounded, except with negligible probability. Moreover, for this
choice of p the distribution S in Lemma 6.1 has min-entropy n·log(q/p) ≥ n·log(q/σ)−2 log(log(λ))

Proof of Lemma 6.1. Assume that reduction modulor p computes a central residue class represen-
tation in [−p/2, p/2]. The algorithm A proceeds as follows.

A(A,y) :

• Compute e← y mod p

• Solve the equation system s ·A = y − e for s, e.g. via Gaussian elimination.

• Output s

To see that the algorithm A is correct, note that

y mod p = (s ·A + e) mod p = (p · r ·A + e) mod p = e

as p ≥ 2B and ‖e‖ ≤ B.

7 Barriers for Entropic LWE

In the last Section we provided an attack on entropic LWE when the min-entropy of the secret is
below n·log(q/σ) for a worst-case choice of the modulus q. On might still hope that for more benign
choices of the modulus q this problem might be hard in this entropy regime. In this section we will
provide a barrier for the hardness of entropic LWE in this regime for any modulus. In particular,
we will show that for entropies below n · log(q/σ), the hardness of entropic LWE does not follow
from any standard assumption in a black-box way. This leaves open the possibility that in this
regime the hardness of entropic LWE may be established from more exotic knowledge assumptions.
To establish our result, we will use a framework developed by Wichs [Wic13].

7.1 Simulatable Attacks

We first recall the notion of cryptographic games as a way to characterize cryptographic standard
assumptions due to Haitner and Holenstein [HH09]. This chracterization captures essentially all
falsifiable assumptions [Nao03] used in cryptography, such as LWE.

Definition 7.1 (Cryptographic Games [HH09]). A cryptographic game C = (Γ, c) is defined by a
(possibly inefficient) randomized machine Γ, called the challenger, and a constant c ∈ [0, 1). On
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input a security parameter 1λ, the challenger interacts with an attack A(1λ) and outputs a bit b.
Denote this by Γ(1λ)� A(1λ). The advantage of an attacker A against C is defined by

AdvAC (1λ) = Pr[(Γ(1λ)� A(1λ)) = 1]− c.

We say that a cryptographic game C is secure if for all PPT attackers A the advantage AdvÅC (λ) is
negligible.

Definition 7.2 (Black-Box Reduction). Let C1 and C2 be cryptographic games. A black-box reduc-
tion deriving the security of C2 from the security of C1 is an oracle PPT-machine B(·) for which there
are constants c, λ0 such that for all λ ≥ λ0 and all (possibly inefficient, non-uniform) attackers Aλ
with advantage AdvAλC1 (λ) ≥ 1/2, we have AdvB

Aλ
C2 (λ) ≥ λ−c.

We remark that the choice of the constant 1/2 for the advantage of Aλ is arbitrary and can
be replaced by a non-negligible function (depending Aλ). We now recall the notion of simulatable
attacks [Wic13].

Definition 7.3 (Simulatable Attacks [Wic13]). An ε-simulatable attack on an assumption C is a
tuple (A, Sim) such that A is a stateless, non-uniform possibly inefficient attacker against C, and
Sim is a stateful PPT simulator. We require the following two properties to hold.

• The (inefficient) attacker A successfully breaks C with advantage 1− negl(λ).

• For every (possibly inefficient) oracle machine M(·) making at most q queries to its oracle it
holds that

|Pr[MA(1λ,1)(1λ) = 1]− Pr[MSim(1λ) = 1]| ≤ poly(q) · ε.

where the probabilities are taken over all the random choices involved.

We use the shorthand simulatable attack for ε-simulatable attack with some negligible ε.

We remark that for reasons of conceptual simplicity Wichs [Wic13] required the advantage of
the simulatable adversary A to be 1. But it can easily be verified that Theorem 7.4 below also
works with our slightly relaxed notion which allows the unbounded adversary to have advantage
1 − negl(λ). The following theorem by Wichs [Wic13] shows that the existence of a simulatable
attack for some assumption C1 implies that there cannot by a reduction B which reduces the
hardness of C1 to any standard assumption C2, where C1 and C2 are cryptographic games in the
sense of Definition 7.1.

Theorem 7.4 ([Wic13] Theorem 4.2). If there exists a simulatable attack against some assumption
C1 and there is a black-box reduction B reducing the security of C1 to some assumption C2, then C2
is not secure.

The idea for the proof of this theorem is simple: If an attack A against C1 is simulatable, then
the behavior of BSim will be indistinguishable from BA. But since A breaks C1, it holds that BA
breaks C2. Therefore, the efficient algorithm BSim must also break C2, implying that C2 is insecure.
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7.2 A Simulatable Attack for Entropic LWE

We will now provide a simulatable attack against entropic (search-)LWE. The attack consists of a
pair of a min-entropy distribution S and an attacker A. Since we want to prove a result for general
min-entropy distributions, we assume that both the adversary and the min-entropy distribution S
are adversarially chosen. Thus, we can consider the distribution S as running a coordinated attack
with the attacker A. More importantly, any black-box reduction B reducing the entropic LWE to
a standard assumption will only have black-box access to the distribution S. We remark that, to
the best of our knowledge, currently all reductions in the realm of leakage resilient cryptography
only make black-box use of the distribution. Making effective non-black box use of an adversarially
chosen sampling circuit seems out of reach for current techniques. Assume in the following that
m ≥ 2n and let χ be a B-bounded error distribution. Furthermore let k be a positive integer.
Consider the following attacker, consisting of the adversary A and the distribution S.

• The distribution S is a flat distribution on a set S of size 2k, where the set S is chosen
uniformly random.

• AS(A,y): Given a pair (A,y), the attacker A proceeds as follows:

– Check if the matrix A has an invertible column-submatrix, if not abort and output ⊥
(this check can be performed efficiently using linear algebra).

– Compute a set I ⊆ [m] of size n such that the column-submatrix AI is invertible (where
AI is obtained by dropping all columns of A that do not have indices in I).

– Set A′ = AI and y′ = yI (i.e. y′ is y projected to the coordinates in I)

– Initialize a set S′ = ∅
– For every s ∈ S, check if ‖y − sA‖∞ ≤ B, if so include s in the set S′.

– Choose an s←$ S
′ uniformly random and output s

First observe that whenever the matrix A has an invertible submatrix, then A does have
advantage 1. The probability that A does not have an invertible submatrix is at most log(q)·2n−m =
log(q) · 2−n, which is negligible (see Section 2). Consequently, A breaks ent-LWE(q, n,m,S, χ) with
probability 1− negl(λ).

We will now provide our simulator for the adversary A and the distribution S. The simulator
jointly simulates the distribution S and the attacker A, i.e. from the interface of an oracle machine
B it holds that Sim(1λ, ·, ·) simulates (S(·),A(·)). The advantage of the simulator stems from having
a joint view of the samples provided so far and the inputs of the adversary A. The main idea of
our simulator is that is samples the set S lazily and keeps track of all the samples S∗ it gave out
so far. When provided with an instance (A,y), it will perform the same check as A but restricted
to the set X ′ and therefore run in time O(q). Recall that the simulator is stateful.

• Simulator Sim(1λ, ·, ·):

– Initialize a set S∗ = ∅.
– Whenever a sample is queried from S, choose s ←$ Z

n
q uniformly random, include s in

the set S∗ and output s.

– Whenever an instance is provided to A, do the following:
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∗ Initialize a set S′ = ∅
∗ Check for every s ∈ S∗, check if ‖y − sA‖∞ ≤ B, if so include s in the set S′.

∗ Choose an s←$ S
′ uniformly random and output s.

We will now show that the simulator Sim simulates the attack (A,X ) with negligible error. We
need the following lemma.

Lemma 7.5. Let z←$ Znq be distributed uniformly random. Then it holds that

Pr[‖z‖∞ ≤ B] ≤ ((2B + 1)/q)n.

Proof. Since all the components zi of z are distributed uniformly and independently, it holds that

Pr[‖z‖∞ ≤ B] =
n∏
i=1

Pr[|zi| ≤ B] ≤ ((2B + 1)/q)n.

Theorem 7.6. Let χ = χ(λ) be a B-bounded error-distribution. Further, let k < n · log(q/(2B +
1)) − ω(log(λ)) be an integer. Let S̄ be the family of all distributions on Znq with min-entropy at
most k. Then, if there is a reduction B from ent-LWE(q, n,m, S̄, χ) to any cryptographic game C,
then C is not secure.

Proof. We will show that (S,A) is a simulatable attack for ent-LWE(q, n,m, S̄, χ), where S ∈ S̄.
The claim then follows immediately by Theorem 7.4. We will prove the statement by a hybrid
argument. Fix a (possibly inefficient) machine B, assume that B queries S at most `1 times and A
at most `2 times. Let H0(1

λ) = BS,A(1λ). For i = 1, . . . , `2 we define the following hybrids Hi.

Hi : Hi behaves identical to BSim(1λ, ·, ·) until B makes its i+ 1-st call to the attacker oracle. At
this point, take the set S∗ computed by Sim and complement it to a set S by choosing the
missing elements uniformly random and fixing them. Moreover, starting from this call answer
every call to the attacker oracle by AS(·).

Note first that H`2 is identically distributed to BSim(1λ). Also observe that from the view of
B the experiments Hi and Hi+1 are identically distributed until the i+ 1-st query to the attacker
oracle.

Now fix the any state of B and Sim when B sends its i+1-st query (A,y) and assume that B has
observed outputs from S̃ = {s1, . . . , s`′1} from S with `′1 ≤ `1. At this point Hi samples elements
s′`′1+1, . . . , s

′
K uniformly at random. We claim that if it holds for all j ∈ {`+ 1, . . . ,K} that

‖s′jA− y‖ > B,

then the outputs of AS and Sim are identical. To see this, note that if this condition holds, then
both AS and Sim will either output a uniformly random element from S̃ = {s ∈ X∗ | ‖sA−y‖ ≤ B}
or ⊥ if the set S̃ is empty.

Thus, to bound the statistical distance between Hi and Hi+1 it is sufficient to bound the
probability of the above event. Note that we can sample s′`′1+1, . . . , s

′
2k

by choosing the s′j from
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Znq \S̃ uniformly random without replacement. This implies that for each index j ∈ {`′1 +1, . . . , 2k},
the marginal distribution of s′j is uniform over Znq \S̃.

But we can sample s uniformly from Znq \S̃ by sampling s uniformly from Znq and rejecting if

s ∈ S̃. Thus, a s′ sampled uniformly from Znq \S̃ has statistical distance at most |S̃|/qn ≤ `1/q
n

from a uniformly random s←$ Znq . Consequently by Lemma 7.5, it holds for each index j that

Pr
S

[‖s′jA− y‖ ≤ B] ≤ ((2B + 1)/q)n + `1/q
n.

A union-bound over all indices j ∈ {`′1, . . . , 2k} yields that

Pr
S

[∃j ∈ {`′1, . . . , 2k} : ‖s′jA− y‖ ≤ B] ≤ (2k − `1) · (((2B + 1)/q)n + `1/q
n))

We can conclude that the statistical distance between H0 and H`2 is at most

δ = `2 · (2k − `1) · (((2B + 1)/q)n + `1/q
n))

≤ 2`2 · 2k · ((2B + 1)/q)n

≤ 2`2 · 2−ω(log(λ))

= negl(λ).

Here the first inequality follows from `1 ≤ (2B+1)n (as `1 is polynomial) and the second inequality
follows from our assumption that k < n · log(q/(2B+1))−ω(log(λ)). This concludes the proof.
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