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Abstract. In this work we present a new approach to verifiable decryp-
tion which converts a 2-party passively secure distributed decryption
protocol into a 1-party proof of correct decryption. To introduce our
idea, we present a toy example for an ElGamal distributed decryption
protocol that we also give a machine checked proof of, in addition to
applying our method to lattices. This leads to an efficient and simple
verifiable decryption scheme for lattice-based cryptography, especially
for large sets of ciphertexts; it has small size and lightweight computa-
tions as we reduce the need of zero-knowledge proofs for each ciphertext.
We believe the flexibility of the general technique is interesting and pro-
vides attractive trade-offs between complexity and security, in particular
for the interactive variant with smaller soundness.
Finally, the protocol requires only very simple operations, making it easy
to correctly and securely implement in practice. We suggest concrete
parameters for our protocol and give a proof of concept implementation,
showing that it is highly practical.

Keywords: verifiable decryption · distributed decryption · lattice-based
crypto · MPC-in-the-Head · zero-knowledge proof · implementation

1 Introduction

There are many applications where we not only need to decrypt a ciphertext, but
also prove that we have decrypted the ciphertext correctly without revealing the
secret key. This is called verifiable decryption. Examples include mix-nets used
for anonymous communication [SSA+18], decryption of ballots in electronic vot-
ing [HM20], and various uses of verifiable fully homomorphic encryption [LW18].
In particular, such applications usually require the decryption of a large number
of ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption
schemes based on discrete logarithms (for ElGamal, proving the equality of two

https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0003-2134-3099
https://orcid.org/0000-0002-2785-8301
https://orcid.org/0000-0002-5455-0409


discrete logarithms [CP92] will do). Except for the recent publication by Lyuba-
shevsky et al. [LNS21] (which provides a rather complicated decryption proof by
combining proofs of linear relations, multiplications and range proofs), no effi-
cient and straight-forward zero-knowledge proofs of correct decryption are known
for lattice-based cryptography or other post-quantum encryption schemes. This
state-of-affairs is unsatisfying, in particular because many applications that re-
quire zero-knowledge proofs of correct decryption should also be secure in the
face of quantum computers which are becoming increasingly more powerful. For
example, the electronic voting system Helios [Adi08] and the Estonian voting
protocol [HW14] are using classical encryption schemes and decryption proofs
with corresponding quantum threats to the long-term privacy of the voters.

On the contrary, there do exist efficient and straightforward passively secure
lattice-based encryption schemes with distributed decryption. In such a scheme,
the decryption key is shared among several players. Decryption is done in a
distributed fashion by each player creating a decryption share, which can be in-
dividually verified, and a reconstruction algorithm can recover the message from
the decryption shares. Distributed decryption allows more general methods to
recover the message, such as general multi-party computation. There are many
useful and efficient lattice-based threshold cryptosystems and distributed decryp-
tion schemes [BD10,BS13,DPSZ12,DOTT21,DHRW16,BKS19]. In particular,
if the security requirements are relaxed, lattice-based distributed decryption can
be very straight-forward.

Our main idea is to use MPC-in-the-head [IKOS07] in conjunction with a
2-party passively secure distributed decryption scheme to construct a very sim-
ple verifiable decryption scheme; however, we shall see that there are various
technical challenges. To achieve the desired level of security, we run the 2-party
decryption scheme on the ciphertexts many times locally, and then reveal a ran-
dom subset of keys, one for each run, allowing others to verify that it was done
correctly.

1.1 Contribution

Our main contribution is a transformation from a 2-party passively secure dis-
tributed decryption scheme to a 1-party verifiable decryption scheme. To achieve
this, we use MPC-in-the-head with the 2-party decryption scheme. The idea is
that the prover runs the 2-party decryption protocol many times and reveals the
resulting decryption shares. The interactive verifier will then, for each run of the
decryption scheme, ask to see one of the two decryption keys and any randomness
involved in creating the corresponding decryption shares. With this information,
it is straight-forward for the verifier to ensure that half of the decryption shares
were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability
(close to) 1/2 of detecting this in each round. If a cheating prover is consistently
successful, we can use rewinding to extract both secret shares. Furthermore, if
the 2-party decryption scheme is passively secure, revealing one share will not
reveal anything about the secret key itself.
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There are four remaining obstacles, two easy and two somewhat trickier. The
first easy obstacle is that in a threshold public key encryption scheme or dis-
tributed decryption scheme, the decryption key shares are generated as part of
key generation. We already have a decryption key, but we need to create many
independent sharings of that key. For discrete logarithm-based schemes like El-
Gamal, this is usually trivial. For the schemes we consider, it is still not hard, but
it follows that we do not have a fully general reduction from 2-party distributed
decryption to (1-party) verifiable decryption. The second easy obstacle is that
given both secret key shares we want to recover the secret key. We solve this
by extending the notation of a distributed decryption function with a function
which recovers the key from the shares. This is easy to satisfy in practice.

The third obstacle is that the verifier needs to make sure that the revealed
key share is correct. For ordinary threshold decryption schemes, this can often
be avoided, either because the dealer is trusted or replaced by some multi-party
computation. Therefore, we need to use a non-generic solution here. For batched
decryption, the main observation is that we only verify the key once for each
run of the 2-party decryption scheme, not once per ciphertext in the batch. The
number of runs essentially corresponds to the security parameter, which in many
applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate shares
of the decryption key, any auxiliary information related to them, and decryption
shares. Although similar techniques are common in the construction of threshold
public key encryption scheme, the security definitions do not actually require
their presence. Since we need them, our approach is again somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares
by revealing decryption key shares and any randomness involved, we can make
do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed
decryption scheme to a verifiable decryption scheme. Since the security require-
ments for the distributed decryption scheme are shifted compared to traditional
threshold decryption schemes, this will allow us to use very simple threshold
decryption. This means that it can be very efficient, both with respect to com-
putational time and size of the decryption shares. Even though the decryption
is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small
security parameter, making the protocol extremely cheap. For instance, in any
system where detected cheating will have a significant penalty, rational actors
will be deterred by even a small chance of detection. However, when the protocol
is made non-interactive, this clearly does not work.

We prove in the interactive theorem prover Coq [BCHPM04] a simplified
variant of our transform and an ElGamal toy example. Regrettably, we are un-
able to prove the full transform and the lattice example due to limitations in the
interactive theorem prover. Indeed, to our knowledge, no interactive theorem
prover exists which provides adequate support. Nevertheless, the proof of the
simplified variant increases confidence in the result.
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It is worth emphasizing that our protocol is very simple to implement (using
Stern-based zero-knowledge proofs [KTX08,LNSW13] to ensure that key-shares
are well-formed), lowering the bar for deploying our scheme in practice. We note
that lattice-based zero-knowledge proofs in general can be very complicated, in-
volving a combination of proofs of linear relations, proofs of shortness and range
proofs, in addition to Gaussian sampling, rejection sampling and optimizations
exploiting partially splitting rings and automorphisms [ALS20,LNS21]. Correctly
and securely implementing voting systems using primitives based on discrete log-
arithms is hard [HLPT20], and lattice-based primitives makes it harder. In our
protocol we only need to sample uniformly random or short elements in any ring
of our choice, and use standard cut-and-choose techniques to open committed
values, making it easy to use in practice. Concretely, this means that we are
not vulnerable to side-channel attacks against Gaussian sampling [BHLY16] or
rejection sampling [EFGT17].

Combined with the main contribution, this gives us a verifiable decryption
scheme for a lattice-based public key encryption scheme that is very efficient
when the number of ciphertexts is much larger than the security parameter.
The protocol is fast and simple, and the proof size is small. We give concrete
parameters and a proof of concept implementation of our protocol in Section 7.

1.2 Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two
discrete logarithms [CP92], and can be batched for significantly improved per-
formance when decrypting many ciphertexts [Gor98,PBD07].

The ”dual” Regev system [LPR13] can be used by making the randomness
public. However, this is not zero-knowledge and opens for so-called ”tagging-
attacks” to de-anonymize users in privacy-preserving applications (e.g., e-voting).

Threshold encryption schemes [DF90] and distributed decryption schemes
are now well-understood, and many constructions exist [BD10], in particular
those related to SPDZ [DKL+13,DPSZ12,KPR18]. When only passive security
is required, these schemes can be quite efficient. Threshold decryption with active
security implies verifiable decryption when the verification of decryption shares
is a public operation. The problem is that it is often costly to provide a threshold
decryption scheme with active security. Our approach gives away a decryption
key share and randomness involved, and it is trivial to verify that the key share
has been used correctly.

We compare more in detail with recently developed verifiable decryption
protocols [BD10,BCOS20,LNS21,Sil22] in Section 8.

2 Passively Secure 2-party Decryption

A distributed decryption scheme enables a set of players to distribute the decryp-
tion of ciphertexts, in such a way that only authorized subsets of players can do
the decryption. Usually, the decryption key shares are created once during key
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generation. As discussed in the introduction, we will generate independent de-
cryption key sharings repeatedly, so we need to define the syntax of our variant
of distributed decryption schemes precisely.

Consider a public key cryptosystem with key generation algorithm KeyGen,
encryption algorithm Enc and decryption algorithm Dec. We extend the notation
with a predicate KeyM for key-matching which takes as input a public and secret
key. We require for all matching public and secret keys pk, sk and all messages
m, that Dec(sk,Enc(pk,m)) = m (with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of
four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and
a reconstruction algorithm. We consider only two parties where both decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding
secret key and outputs two secret key shares and some auxiliary data aux.

The verify algorithm (Verify) takes as input a public key, auxiliary data, an
index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a cipher-
text and outputs a decryption share ds.

The reconstruction algorithm (Rec) takes as input a ciphertext and two de-
cryption shares and outputs either ⊥ or a message.

Intuitively, the protocol is correct if Play and Rec collectively recover the
encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness). A distributed decryption protocol is correct if for
any key pair (pk, sk) s.t. KeyM(pk, sk) = 1, all c = Enc(pk,m), any (sk0, sk1, aux)
output by Deal(pk, sk), then, for i = 0, 1, Verify(pk, aux, i, ski) = 1, and

Pr [ m← Dec(sk, c);Rec(c,Play(sk0, c),Play(sk1, c)) = m ] ≥ 1− negl.

For a distributed decryption protocol, we must trust the dealer for privacy,
but not for integrity. The integrity property below says that if both secret shares
given by the dealer are valid (according to the Verify algorithm), then the Play
and Rec will collectively recover the encrypted message.

Definition 2 (Integrity). A distributed decryption protocol has integrity if
there exists an efficient algorithm (named FindKey which takes as input the public
key, the two secret key shares and the auxiliary information, and returns a secret
key) such that for all public keys pk, ciphertexts c = Enc(pk,m), secret key shares
(sk1, sk2), and auxiliary data aux and sk output by FindKey(pk, sk0, sk1, aux) sat-
isfying Verify(pk, aux, i, ski) = 1, for i = 0, 1, we have that

Pr [ KeyM(pk, sk) ∧ Rec(c,Play(sk0, c),Play(sk1, c)) = Dec(sk, c) ] ≥ 1− negl.
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For threshold cryptosystems and distributed decryption, security is typically
defined through the usual security games for public key cryptosystem, allowing
the adversary access to the decryption key shares through decryption share ora-
cles. This security notion is not very convenient for us, so we shall instead rely on
a variant of simulatability, namely we must be able to simulate both decryption
key shares and decryption shares in a consistent fashion.

Expddp−sim−0
A (pk, sk)

(i, (c0, ..., cτ ), (m0, ...,mτ ))← A(pk)
(sk0, sk1, aux)← Deal(pk, sk)

∀j : dsj ← Play(sk1−i, cj)

b = A(aux, ski, (ds0, ..., dsτ ))
return b

Expddp−sim−1
A (pk)

(i, (c0, ..., cτ ), (m0, ...,mτ ))← A(pk)
(ski, aux)← DealSim(pk, i)

∀j : dsj ← PlaySim(pk, ski, cj ,mj)

b = A(aux, ski, (ds0, ..., dsτ ))
return b

Fig. 1. The passively secure experiment for distributed decryption protocols.

Definition 3 (Simulatability). Consider a pair of algorithms DealSim and
PlaySim and an adversary A playing the experiments from Figure 1, where A al-
ways outputs c = (c0, ..., cτ ),m = (m0, ...,mτ ) such that {mj = Dec(sk, cj)}τj=1.
The simulatability advantage of A is

Advddp−sim(A, pk, sk) =

|Pr[Expddp−sim−0A (pk, sk) = 1]− Pr[Expddp−sim−1A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ϵ)-simulatable (or
just simulatable) if no t-time algorithm A has advantage greater than ϵ.

2.1 Toy Example: Distributed ElGamal

We briefly recall ElGamal encryption for a given cyclic group G of prime order
p with generator g and give a toy decryption example.

Key generation (KeyGen) samples x from Z∗p and return (gx, x).
Encryption (Enc) takes as input a public key pk ∈ G and message m ∈ G,

samples r from Z∗p, and returns (gr, pkrm).
Decryption (Dec) takes as input a secret key x ∈ Z∗p and ciphertext (c1, c2),

and returns c2/c
x
1 .

Keymatch (KeyM) takes as input a public key pk ∈ G and a secret key x ∈ Z∗p
and returns 1 if gx = pk and otherwise 0.
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We will now give a distributed decryption protocol for ElGamal. This uses a
(2, 2)-secret sharing of the decryption key, and it works because of ElGamal’s
key-homomorphic property.

The dealer algorithm (Deal) takes as input a public key gx and corresponding
secret key x, samples x0 from Z∗p, sets x1 = x−x0 and returns (x0, x1, aux =
(gx0 , gx1)).

The verify algorithm (Verify) takes as input a public key pk, auxiliary data
aux = (aux0, aux1), an index i and a secret key share xi and outputs 1 iff
(gxi = auxi) ∧ (pk = aux0aux1).

The player algorithm (Play) takes as input a secret key share xi and a ci-
phertext (c1, c2) and outputs decryption share cxi

1 .
The reconstruction algorithm (Rec) takes as input a ciphertext (c1, c2) and

decryption shares (t0, t1) and outputs c2/(t0t1).

Correctness. Substituting ElGamal into the definition of correctness, for (gx, x)
and (x0, x1, (g

x0 , gx1)) ← Deal(gx, x), we get that the verify algorithm accepts
both secret key shares and for any ciphertext (gr, gxrm), we get that

((gx)rm)/((gr)x0(gr)x1) = (gr)xm(gr)−x0−x1 = m,

so correctness holds unconditionally.

Integrity. FindKey takes as input two key shares x0, x1 and outputs x = x0+x1.
Again, if the verify algorithm accepts both secret key shares, then we know that
gx = gx0gx1 and unconditional integrity follows from the computations above.

Privacy. Simulators DealSim and PlaySim work as follows:

– DealSim takes the public key pk and a bit i, samples xi from Z∗p and returns
(wlog.) (xi, (g

xi , pk/gxi)). It is clear that the auxiliary data and secret key
from the simulator have the same distribution as the Deal.

– PlaySim takes as input public key pk, secret key xi, ciphertext (c1, c2), and
message m and returns a decryption share c2/(c

xi
1 m). Since m is the message

encrypted in the ciphertext this is a perfect simulation if m is the correct
decryption.

Note that these simulators are perfect due to ElGamal’s elegant homomorphic
structure, both with respect to keys and messages.

3 Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryp-
tion from the distributed decryption protocol. The protocol is given in Figure 2.
More precisely, our proof system is a sigma protocol with completeness, special
soundness, and honest verifier-zero knowledge.
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For any public key cryptosystem, a public key output by the key generation
algorithm uniquely defines a decryption function that for all messages agrees with
the decryption algorithm for any ciphertext output by the encryption algorithm,
except those that lead to decryption failure.

Recall that for a batched verifiable decryption protocol the statement consists
of a public key, a vector of ciphertexts and a vector of messages, where the
ciphertexts have been output by the encryption algorithm. The statement is in
the language if and only if the messages correspond to the decryption function
applied to the ciphertexts. The secret key (witness) satisfies the relationship with
the statement if it corresponds to the public key and the message vector is the
decryption of the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret
key by calling the Deal algorithm λ times. For each sharing and each ciphertext,
the prover uses the Play algorithm to construct the decryption share. The prover
sends the auxiliary information from Deal and all the shares to the verifier. Then,
the verifier returns a challenge which is a binary vector of length λ. The prover
finally reveals the corresponding parts of the shares as well as any randomness
used in the Play algorithms with this key share. The prover checks that (1) all the
revealed shares verify, (2) the decryption shares are consistent with the revealed
key shares, and (3) the messages correspond to the decryption shares.

Completeness. Up to the possible negligible error introduced by decryption fail-
ures, completeness follows immediately by construction and the correctness of
the underlying distributed decryption protocol.

Special Soundness. By rewinding, any cheating prover with a significant suc-
cess probability can be used to create two accepting conversations (w,β, z) and
(w,β′, z′), with β ̸= β′. From this it follows that β[k] ̸= β′[k] for at least one
k, and the verify algorithm has accepted both secret key shares and every de-
cryption share in this round has been correctly created using the Play algorithm.
Then, since the ciphertexts are encryptions of the first message vector, integrity
implies that FindKey will recover a witness which matches the public key and
for which the messages match the output of the decryption function.

Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the state-
ment (pk, {cj}τj=1, {mj}τj=1) and the challenge β: First, for i = 1, ..., λ, we
let (auxi, skβ[i],i) ← DealSim(pk,β[i]) and, for j = 1, ..., τ , we let dsβ[i],j,i ←
PlaySim(pk, skβ[i],i, ci,mi) and ds1−β[i],j,i ← Play(pk, skβ[i],i, ci). The proof tran-
scripts is then ((pk, {cj}τj=1, {mj}τj=1), (auxi, ds0,j,i, ds1,j,i),β, skβ[i],i). This is com-
putationally indistinguishable from the honest transcripts if the distributed de-
cryption protocol is simulatable.

4 Machine Checked Proofs

We adopt the definition of a sigma protocol from [HGT19] but do not require
that the simulator always produces accepting transcripts when the statement is
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ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1); (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k, sk1,k, auxk)← Deal(pk, sk)

i = 0, 1:

j = 1, ..., τ :

dsi,j,k ← Play(ski,k, cj ; ρi,k,j)

w ← ({auxk, {ti,j,k}})

w

β←$ {0, 1}λ

β

z ← ({skβ[k],k}k, {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k, cj ; ρβ[k],k,j)
?
= dsβ[k],j,k

Rec(cj , ds0,j,k, ds1,j,k)
?
= mj

Fig. 2. Proof of correct decryption. ρi,k,j denotes the random tape used by the Play
algorithm to create the ith share of the jth ciphertext in the kth run of the protocol.

not in the language. This does not affect on our intended use cases but prevents
us from applying the standard transform to a disjunctive proof.

– We formally define an encryption scheme along the lines above in the paper
but with perfect correctness. This can be found in the attached source in the
Module Type EncryptionScheme.

– We formally define a distributed decryption schemes as a functor on encryp-
tions schemes as above in the paper. However, we require perfect correctness,
integrity and simulatability. (Module Type DistributedDecryption)

– We describe the transform for an arbitrary distributed decryption scheme
and prove that the result is a sigma protocol for correct decryption. (Module
ProofOfDecryption)

– We define the ElGamal cryptosystem and distributed decryption protocol
and prove they satisfy the respective definitions. (ElGamal, DDElGamal).
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The source code written in Coq is available online†.
We are unable to do better because no interactive theorem provides good

support for cryptographic arguments and support for lattice primitives. Never-
theless, our work is an important step in the direction of proving the full result
if and when interactive theorem provers are ready.

5 Background: Lattice-Based Cryptography

5.1 The Cyclotomic Ring Rq

LetN be a power of 2 and q a prime such that q ≡ 1 mod 2N . Then we define the
rings R = Z[X]/⟨XN +1⟩ and Rq = R/qR, that is, Rq is the ring of polynomials
modulo XN + 1 with integer coefficients modulo q. This way, XN + 1 splits
completely into N irreducible factors modulo q, which allows for very efficient
computation in Rq due to the number theoretic transform (NTT) [LN16].

We define the norms of elements

f(X) =
∑

αiX
i ∈ R

to be the norms of the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi|, ||f ||2 =

(∑
α2
i

)1/2

, ||f ||∞ = max{|αi|}.

For an element f̄ ∈ Rq we choose coefficients as the representatives in
[
− q−1

2 , q−1
2

]
,

and then compute the norms as if f̄ is an element in R. For vectors a =
(a1, . . . , ak) ∈ Rk we define the norms to be

∥a∥1 =
∑
∥ai∥1, ∥a∥2 =

(∑
∥ai∥22

)1/2

, ∥a∥∞ = max{∥ai∥∞}.

5.2 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Ring-SIS problem in its Hermite Normal
Form.

Definition 4. The SKS2N,q,β problem is to find a short vector x of ℓ2 norm less
than or equal to β in R2

q satisfying [ a 1 ] ·x = 0 for a given uniformly random

a in Rq. An algorithm A has advantage ϵ in solving the SKS2N,q,β problem if

Pr

[
[a 1] · x = 0 a←$Rq;
∧ ∥xi∥2 ≤ β 0 ̸= x ∈ R2

q ← A(a)

]
≥ ϵ.

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm denoted
as DKS∞. The DKS∞ problem is equivalent to the Ring-LWE problem when the
number of samples is limited.

† www.dropbox.com/s/mn9gfmw3utkffyq
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Definition 5. The DKS∞N,q,β problem is to distinguish the distribution [ a 1 ] ·
x, for a short x, from the uniform distribution when given uniformly random a
in Rq. An algorithm A has advantage ϵ in solving the DKS∞N,q,β problem if∣∣Pr[b = 1 | a←$Rq;x←$R2

q s.t. ∥x∥∞ ≤ β; b← A(a, [ a 1 ] · x)]
− Pr[b = 1 | a←$Rq;u←$Rq; b← A(a, u)]| ≥ ϵ.

See [LM06,LPR10] for more details about knapsack problems.

5.3 BGV Encryption

We present a plain version of the BGV encryption scheme by Brakerski, Gentry
and Vaikuntanathan [BGV12]. Let p≪ q be primes, let Rq and Rp be polynomial
rings modulo the primes q or p and XN + 1 for a fixed N , let B∞ ∈ N be a
bound and let κ be the security parameter. The encryption scheme consists of
three algorithms: key generation, encryption and decryption, where

- KeyGen samples an element a←$Rq uniformly at random, samples short
s, e←$Rq such that max(∥s∥∞, ∥e∥∞) ≤ B∞. The algorithm outputs the
public key pk = (a, b) = (a, as+ pe) and the secret key sk = (s, e).

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples
short r, e′, e′′←$Rq such that the norm max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞,
and outputs the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m) in R2

q .

- Dec, on input the secret key sk = (s, e) and a ciphertext c = (u, v), outputs
the message m = (v − su mod q) mod p in Rp.

The decryption algorithm is correct as long as the norm max∥v − su∥∞ = BDec <
⌊q/2⌋. It follows that the BGV encryption scheme is secure against chosen plain-
text attacks if the DKS∞N,q,β problem is hard for some β = β(N, q, p,B∞).

Furthermore, we present the passively secure distributed decryption tech-
nique by Bendlin and Damg̊ard [BD10] used in the MPC-protocols by Damg̊ard
et al. [DKL+13, DPSZ12]. When decrypting, we assume that each decryption
server Dj , for 1 ≤ j ≤ ξ, has a uniformly random share skj = sj of the secret
key sk = (s, e) such that s = s1 + s2 + ... + sξ. Then they partially decrypt in
the following way:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v),
computes mj = sju, sample some large noise Ej ←$E ⊂ Rq such that
∥Ej∥∞ ≤ 2sec(BDec/pξ) for some statistical security parameter sec and up-
per error-bound max∥v − su∥∞ ≤ BDec, then outputs dsj = tj = mj + pEj .

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption as long
as the noise max∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋ (see [DKL+13, Appendix
G]). Here, t will be indistinguishable from random except with probability 2−sec.

11



5.4 Lattice-Based Commitments

We first define a commitment scheme and its security.

Definition 6 (Commitment Scheme). A commitment scheme consists of
three algorithms: key generation (KeyGen), commitment (Com) and opening (Open),
where

- KeyGen, on input security parameter 1λ, outputs public parameters pp,
- Com, on input message m, outputs commitment c and opening r,
- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

Definition 7 (Completeness). We say that the commitment scheme is com-
plete if an honestly generated commitment is accepted by the opening algorithm.
Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1,

where the probability is taken over the random coins of KeyGen and Com.

Definition 8 (Hiding). We say that a commitment scheme is hiding if an ad-
versary A, after choosing two messages m0 and m1 and receiving a commitment
c to either m0 or m1 (chosen at random), cannot distinguish which message c
is a commitment to. Hence, we want that

|Pr

b = b
′

:

pp← KeyGen(1λ)
(m0,m1, st)← A(pp)

b
$← {0, 1}, c← Com(mb)

b′ ← A(c, st)

− 1

2
| ≤ negl,

where the probability is taken over the random coins of KeyGen and Com.

Definition 9 (Binding). We say that a commitment scheme is binding if an
adversary A, after creating a commitment c, cannot find two valid openings to
c for different messages m and m̂. Hence, we want that

Pr

 m ̸= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:
pp← KeyGen(1λ)

(c,m, r, m̂, r̂)← A(pp)

 ≤ negl,

where the probability is taken over the random coins of KeyGen.

We note that the public key in the BGV encryption scheme is essentially
a commitment to the secret key. In general, ignoring the constant p, the value
b = as + e is a commitment to a short random secret s with randomness e if e
is short and a is a uniformly random public element.

More formally, let q be a prime, let Rq be defined as above for a fixed N and
let B∞ ∈ N be a bound. These are the public parameters pp. The commitment
scheme consists of three algorithms: key generation (KeyGen), commit (Com) and
open (Open), where

12



- KeyGen samples an element a′←$Rq uniformly at random and outputs the
public commitment key pk′ = a′.

- Com, on input the public key pk′ = a′ and a pseudo-random message m in Rq

such that ∥m∥∞ ≤ B∞, samples a short rm←$Rq such that ∥rm∥∞ ≤ B∞,
outputs commitment cm = a′m+ rm and opening dm = (m, rm).

- Open, on input a commitment cm and an opening dm = (m, rm), checks if
max(∥m∥∞, ∥rm∥∞) ≤ B∞ and cm = a′m+rm, and outputs 1 if both checks
hold and otherwise 0.

It follows directly that the commitment scheme is (computationally) hiding if
DKS∞N,q,B∞

is hard and (computationally) binding if SKS2
N,q,
√
2N ·B∞

is hard.

5.5 Zero-Knowledge Proof of Shortness

We present the Stern-based [Ste94] zero-knowledge proof of knowledge protocol
by Kawachi et al. [KTX08] and Ling et al. [LNSW13]. We will later use this to
prove that we know a valid opening dm of a commitment cm without leaking
any information about the message nor the randomness. We denote the protocol
by ΠZKPoS.

Note that multiplication with a polynomial a′ in Rq can be re-written as a
matrix-vector product by a negacyclic N × N -matrix A′ over Zq. Define A =
[ A′ IN ], and let B∞ = 1 for simplicity (it can be generalized to any B∞,
see [LNSW13]). We give a zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ∥x∥∞ = 1}.

Furthermore, letBm be the set of all vectors x̂ of length 3m withm coordinates of
each element in {0, 1,−1}. It is then trivial to extend any witness x of the relation
RDKS∞

N,q,1
to a vector x̂ in B2N by appending values and extending the matrix

A to the matrix Â = [ A 0N×4N ]. It follows that Ax = y mod q∧∥x∥∞ = 1

if and only if Âx̂ = y mod q∧ x̂ ∈ B2N . Let S6N be the set of permutations on
6N symbols. The full protocol is given in Figure 3.

This protocol has soundness 2/3, and hence, must be repeated µ = λ ·
ln(2)/ ln(3/2) times to achieve soundness 2−λ. However, the protocol is very sim-
ple and lightweight in computation. We observe that the commitments c1, c2, c3
are commitments to random values, and the commitments does not need any
structure. Hence, we can compute the commitments as plain hashes of the com-
mitted values. Furthermore, we only need to sample a uniformly random per-
mutation π from S6N and a uniformly random vector r from Z6N

q . Compared to
other lattice-based zero-knowledge protocols, there are no Gaussian sampling,
no rejection sampling, no use of partially splitting rings or automorphisms.

We restrict permutations π to lie in the subgroup H generated by sign swaps
and the transpositions {(i i + 6N) | for i from 1 to 6N}. This subgroup has
86N elements which can be represented by 18N bits. Each vector in Z6N

q can
be represented by 6N log q bits, each vector in B2N can be represented by 12N
bits, and each commitment can be represented by 2κ bits. As β is uniformly
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ΠZKPoS

Prover((A,y);x) Verifier(A,y)

expand (A,x) to (Â, x̂)

π←$S6N , r←$Z6N
q

c1 ← Com(π, Âr)

c2 ← Com(π(r))

c3 ← Com(π(x̂+ r))

w = (c1, c2, c3)

β←$ {1, 2, 3}

β

if β = 1:

z = (s = π(x̂), t = π(r))

if β = 2:

z = (ϕ = π,u = x̂+ r)

if β = 3:

z = (ψ = π,v = r)

z ΠZKPoSV :

if β = 1:

parse z as s and t

if c2
?
= Com(t) and c3

?
= Com(s+ t) and s ∈ B2N

return 1

if β = 2:

parse z as ϕ and u

if c1
?
= Com(ϕ, Âu− y) and c3

?
= Com(ϕ(u))

return 1

if β = 3:

parse z as ψ and v

if c1
?
= Com(ψ, Âv) and c2

?
= Com(ψ(v))

return 1

return 0

Fig. 3. Zero-knowledge proof of shortness.
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distributed we estimate the proof size assuming that each response will appear
a third of the times each. The total proof, denoted πS , is of size

|πS | = (6κ+ 16N + 6N log q)µ bits. (1)

We finally note that the protocol can be improved using the combinatorial exten-
sions by Beullens [Beu20], reducing the size of the proof by a factor 10 without
much extra computational work nor increased complexity in the implementa-
tion.

6 Zero-Knowledge Protocol of Correct Decryption

6.1 Lattice-Based Distributed Decryption

Setup. We will be working over the ring Rq = Zq[X]/⟨XN + 1⟩ together with a
modulus p≪ q, both prime. These are the public parameters of the protocol, to-
gether with security parameter κ, soundness parameter λ, bound B∞ and max-
imal ciphertext error-bound BDec. We define commitments, their security and
give a concrete instantiation based on lattices in the full version of this paper.
The commitments are both computationally hiding and computationally bind-
ing, in addition to being linearly homomorphic. Finally, let (ΠZKPoS, ΠZKPoSV )
be a non-interactive zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ∥x∥∞ = 1}.

Scheme. We present a distributed decryption version of the BGV encryption
scheme [BGV12], where KeyGen, Enc and Dec are defined in Section 5.3.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and cor-
responding secret key sk = (s, e), samples uniform s0 and e0 from Rq, and
computes s1 = s−s0 and e1 = e−e0. Then it commits to the values as csi =
Com(si), cei = Com(ei), and computes bi = asi+pei so that b = b0+b1. Finally,
it computes non-interactive zero-knowledge proofs πSi proving that the sums
s0 + s1 and e0 + e1 are short (see details in Section 7). It outputs key shares
sk0 = (s0, e0), sk1 = (s1, e1) and aux = (b0, b1, cs0 , cs1 , ce0 , ce1 , πS0

, πS1
).

The verify algorithm (Verify) takes as input a public key pk = (a, b), an index
i, a secret key share ski = (si, ei), openings dsi and dei , and aux. It outputs

1 if and only if (bi
?
= asi + pei) ∧ (b

?
= b0 + b1) ∧ Open(csi , dsi) ∧

Open(cei , dei) ∧ (ΠZKPoSV(ski, aux, πSi
)), and 0 otherwise.

The player algorithm (Play) takes as input a key share ski = (si, ei), a ci-
phertext c = (u, v), samples bounded Ei and outputs dsi = ti = siu+ pEi.

The reconstruction algorithm (Rec) takes as input a ciphertext c = (u, v),
decryption shares (t0, t1), and outputs m = (v − t0 − t1 mod q) mod p.
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6.2 Security

Theorem 1 (Correctness). The distributed decryption scheme in 6.1 is cor-
rect with respect to Definition 1 when max∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋.

Theorem 2 (Integrity). Suppose the protocol ΠZKPoS is (computationally)
sound and that Com is (computationally) binding. Let A0 be an adversary against
integrity of the distributed decryption scheme with advantage ϵ0, and let λ be
the number of rounds in the protocol. Then there exists adversaries A1 and A2

against soundness of ΠZKPoS and binding of Com, respectively, with advantages
ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1+ϵ2+2−λ. The runtime of A1 and A2 are essentially
the same as the runtime of A0.

Proof. We sketch the argument. There are essentially three possible ways to
attack the integrity of the protocol: an attacker that knows the secret decryption
key but correctly guess the challenge in each round is able to decrypt to arbitrary
messages, and otherwise, if the attacker does not know the secret key, needs to
break the underlying schemes. The guessing attack has success probability 2−λ.

For Verify to accept for both i = 0 and i = 1, we need that b = b0 + b1,
b0 = as0 + pe0, b1 = as1 + pe1 and that the zero-knowledge proof of shortness
πS of the sums s0 + s1 and e0 + e1 are accepted. If either of the key shares are
incorrect then Verify accept with probability 0, and if the key shares are correct,
then Rec outputs m except with negligible probability. An attacker can choose
s0, s1, e0 and e1 such that all equations are correct, but the sums are not short.
The soundness of Verify then reduces to the soundness of the zero-knowledge
protocol, and an attacker A0 against this part of the protocol with advantage ϵ0
can be turned into an attacker A1 against ΠZKPoS with the same advantage.

The last option is for the attacker to produce commitments to a true but un-
related statement with respect to the secret key used in the encryption scheme.
This allows the attacker to produce a valid proof of shortness without cheating,
but for an unrelated key. However, Verify only accepts if both the opening of
the commitments are correct and the zero-knowledge proof of shortness verifies.
Hence, and attacker A0 that is able to produce valid openings and proofs with
advantage ϵ0 can be turned into an attacker A2 against Com with the same advan-
tage by rewinding the prover for the zero-knowledge proof of knowledge of short
openings and then extract two different but valid openings to the commitment.

⊓⊔

Theorem 3 (Privacy). Suppose the protocol ΠZKPoS is (statistically) honest-
verifier zero-knowledge, that Com is (computationally) hiding and that Enc is
(computationally) CPA secure. Then there exists a simulator for the verifiable
decryption protocol such that for any distinguisher A0 for this simulator with
advantage ϵ0 there exists an adversary A2 against hiding for the commitment
scheme with advantage ϵ2, an adversary A3 against CPA security for the en-
cryption scheme with advantage ϵ3, and a distinguisher A1 for the simulator of
ΠZKPoS with advantage ϵ1, such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3. The runtime of A1, A2

and A3 are essentially the same as the runtime of A0.
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Proof. Let SimShort be a simulator for ΠZKPoS. We present a simulator DealSim
for the Deal-algorithm and a simulator PlaySim for the Play-algorithm in Figure 4.

DealSim(pk = (a, b), i)

i = 0, 1: s∗i ←$Rq, e∗i ←$Rq

b∗i = as∗i + pe∗i , b∗1−i = b− b∗i
c∗si ← Com(s∗i ), c

∗
s1−i

← Com(s1−i)

c∗ei ← Com(e∗i ), c
∗
e1−i

← Com(s1−i)

π∗
S ← SimShort(c

∗
si , c

∗
s1−i

, c∗ei , c
∗
e1−i

)

aux∗ ← (b∗0, b
∗
1, c

∗
s0 , c

∗
s1 , c

∗
e0 , c

∗
e1 , π

∗
S)

return (sk∗i = (s∗i , e
∗
i ), aux

∗)

PlaySim(sk1−i = (s1−i, e1−i), c = (u, v), i,m)

E1−i ←$E
t1−i = s1−iu+ pE1−i

t∗i = v −m− t1−i mod p

return (ds∗i = t∗i )

Fig. 4. Simulators DealSim and PlaySim.

DealSim: We create the simulator in three steps. We first replace πS by the
simulated proof π∗S produced by SimShort. An attacker A0 with advantage ϵ0
against this change can be turned into an attacker A1 against the simulator
SimShort of protocol ΠZKPoS with the same advantage.

Next, we replace the key shares by uniformly random key-shares s∗i and e∗i
that give correctness, that is, the public key-shares b∗0 and b∗1 sum to b, but s∗0
and s∗1 does not need to sum to a short key s∗ and e∗0 and e∗1 does not need to
sum to short noise e∗. This ensures that Verify outputs 1. An attacker A0 with
advantage ϵ0 against this change can then be turned into an attacker A3 against
CPA security of the encryption scheme with the same advantage.

Finally, we replace the commitments to unopened values by commitments to
random values. This way, none of the values in the protocol any longer depends
on the secret key in the protocol, and b∗i are simulated perfectly. An attacker A0

with advantage ϵ0 against this change can then be turned into an attacker A2

against hiding of the commitment scheme with the same advantage.
PlaySim: we start by sampling bounded E1−i from E and computing t1−i =

s1−iu+ pE1−i. Then we find ti such that (v− t0− t1 mod q) mod p = m. This
ensures that Rec outputs the message m when reconstructing the shares. Here,
the values are sampled according to the exact same distribution as in the real
protocol, and the statistical distance is negligible in the security parameter κ.

⊓⊔

6.3 Zero-Knowledge Proof of Verifiable Decryption

We present the different phases of our sigma protocol for proving correct decryp-
tion. The protocol is given in Figure 5. The security of the construction follows
directly from the results in Section 3 in combination with Theorem 1, 2 and 3.

17



Setup. We are given a honestly generated public key pk = (a, b = as+pe), where
max(∥s∥∞, ∥e∥∞) ≤ B∞. The secret key sk = (s, e) is given to the prover. We are
given a set of honestly generated ciphertexts {(uj , vj) = (arj + pe′j , brj + pe′′j +
mj)}τj=1, where max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞, and set of messages {mj}τj=1.

Commit phase. For soundness parameter λ, the prover does the following for
k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce sk0,k, sk1,k
and auxk. It uses ΠZKPoS to prove that the shares are correctly computed.
Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play algorithm on each
key-share ski,k and ciphertext cj to produce t0,j,k and t1,j,k. Finally, it sends

w ← ({auxk, {ti,j,k}
1,τ
i=0,j=1}λk=1) to end the commitment phase.

Challenge phase. The verifier independently samples a random binary challenge
vector β of length λ. It sends β to the prover.

Respond phase. The prover sends openings z = ({dsβ[k],k
, deβ[k],k

}), for each of
the commitments to each index k of β, to the verifier.

Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm to
make sure that the openings of sβ[k],k and eβ[k],k are valid, check that all shares
of the public key are computed correctly as bβ[k],k = asβ[k],k+peβ[k],k, verify the
public key b = b0,k + b1,k and ensure that each πSi,k

is valid. Further, for each
j = 1, ..., τ , the verifier runs the Rec algorithm to make sure that all decryption
shares are correct and that all messages are decrypted correctly. It outputs 1 if
all checks hold, and 0 otherwise.

Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir
transform [FS87] by hashing the output of the commit phase and use the hash as
challenge, before outputting the response. We note that this can be done similarly
to the optimizations described for estimating the size in the next section. We also
note that the soundness parameter λ initially can be very small in the interactive
case, while it should be (approximately) as large at the security parameter κ in
the non-interactive setting, increasing the size of the proof of decryption.

Hybrid proof. We note that the interaction in the protocol opens for a hybrid
proof: if we wish for a quick result to get confidence in the decrypted ciphertexts
but at the same time can wait longer to be completely certain, we can ask for
two proofs. First, we ask the prover for a proof where λI = 10 or λI = 20, and
sample a random challenge ourselves. If we accept the proof, we ask the prover
to compute a non-interactive proof for the same statement but with λN = 100.
This proof can be received, stored and verified later, knowing already that the
messages most likely are correctly decrypted. The interactive proof also allows
the verifier to arbitrarily increase λI by sending more challenges on the fly, where
we tell the prover when we are done, and he creates the proofs of shortness in
the end. This is particularly useful in real-world applications, e.g., e-voting.
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ΠZKPCD

Prover(((a, b), {(uj , vj)}τj=1, {mj}τj=1); (s, e)) Verifier((a, b), {(uj , vj)}τj=1, {mj}τj=1)

k = 1, ..., λ :

Deal :

(s0,k, s1,k)←$ ⟨s⟩
(e0,k, e1,k)←$ ⟨e⟩
i = 0, 1:

(csi,k , dsi,k )← Com(si,k)

(cei,k , dei,k )← Com(ei,k)

bi,k ← asi,k + pei,k

j = 1, ..., τ :

Play :

Ei,j,k ←$E
ti,j,k = siuj + pEi,j,k

πS0,k ← ΠZKPoS(cs0,k , cs1,k ); (ds0,k , ds1,k ))

πS1,k ← ΠZKPoS(ce0,k , ce1,k ); (de0,k , de1,k ))

w ← ({bi,k, csi,k , cei,k , πSi,k , {ti,j,k}j}i,k)

w

β←$ {0, 1}λ

β

z ← ({dsβ[k],k
, deβ[k],k

}k)

z

k = 1, ..., λ :

Verify :

Open(csβ[k],k
, dsβ[k],k

)
?
= 1

Open(ceβ[k],k
, deβ[k],k

)
?
= 1

1
?← ΠZKPoSV(cs0,k , cs1,k , πS0,k )

1
?← ΠZKPoSV(ce0,k , ce1,k , πS1,k )

bβ[k],k
?
= asβ[k],k + peβ[k],k

b
?
= b0,k + b1,k

j = 1, ..., τ :

Rec :

pEβ[k],j,k = tβ[k],j,k − ujsβ[k],k

∥pEβ[k],j,k∥∞
?

≤ 2sec−1BDec

vj − t0,j,k − t1,j,k
?≡p mj

Fig. 5. Zero-knowledge proof of correct decryption.
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7 Performance

In this section, we shall carefully analyze the performance of our decryption
proof. Along the way, we make several easy optimizations with respect to the
protocol in Figure 5. In particular, we use a commitment in the first message,
and then send only the values that the verifier cannot recompute himself in the
second message. Finally, we compute the zero-knowledge proofs of shortness in
the response phase instead of the commit phase, reducing the number of proofs
by a factor of two in each round of the protocol.

7.1 Proof Size

Each element in Rq is of size N log q bits, which might be large, and each element
in Rp is of sizeN log p bits, which will be small. Short elements bounded by B∞ is
of size N logB∞ bits. We let H be a collision resistant hash-function with output
of length 2κ. Note that the soundness parameter λ may be chosen independently
of, and in particular smaller than, the security parameter κ.

Commit phase. To reduce the number of ring elements being sent, we commit to
the output of the commit phase using a hash-function, and send the hash instead.
More concretely, we let w = H({b0,k, b1,k, cs0,k , cs1,k , ce0,k , ce1,k , {ti,j,k}

1,τ
i=0,j=1}λk=1).

Challenge phase. The verifier sends the vector β consisting of λ independently
sampled bits to the prover.

Respond phase. Note that we do not need to send the partial decryptions tβ[k],j,k,
because they can be computed uniquely from uj , sβ[k],k and Eβ[k],j,k, and we can
let a uniform binary seed ρβ[k],k of length 2κ bits can be used to deterministically
generate the randomness used in each round. Next, we also note that bβ[k],k can
be computed directly from sβ[k],k and eβ[k],k, and b1−β[k],k from b and bβ[k],k.

It follows that, for each k = 1, ..., λ, the prover sends sβ[k],k and eβ[k],k,
commitments cs1−β[k],k

and ce1−β[k],k
together with the openings dsβ[k],k

and
deβ[k],k

, and the partial decryptions {t1−β[k],j,k}τj=1. Since the commitments to
the sharings of s and e are used in the zero-knowledge proof of shortness, these
commitment is computed using lattice-based commitments. We observe that
csk = cs1−β[k],k

+Com(sβ[k],k) and cek = ce1−β[k],k
+Com(eβ[k],k), with randomness

zero, are commitments to sβ[k],k + s1−β[k],k and eβ[k],k + e1−β[k],k, which are
short. Then we use the zero-knowledge proof of shortness to prove that we know
openings of csk and cek to get πS0

and πS1
. Denote all proofs of shortness by πS .

Total communication. The total proof size sent by the prover is

2κ+ λN(4 log q + 2κ+ 2 logB∞) + λτN log q + |πS | bits.
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Zero-knowledge proof of shortness. There are many options for πS , proving
knowledge of valid openings of the commitments csk and cek . We can use the
Fiat-Shamir with aborts framework [Lyu09, Lyu12], but this would give us a
large soundness slack, that is, we prove knowledge of a vector that might be
much larger than what we started with. This would increase the parameters to
be used in the overall protocol. Other alternatives are the exact proofs using
MPC-in-the-head techniques by Baum and Nof [BN20] or the range proofs by
Attema et al. [ALS20]. However, we note that even though these are efficient,
both protocols are very complex and are complicated to implement correctly for
use in the real world. Another approach is to use generic proof systems such as
Ligero [AHIV17] or Aurora [BCR+19], adding more complexity to the overall
protocol. We can also use the amortized proof by Bootle et al. [BBC+18] to
prove that all λ executions are done correctly at the same time. This is the most
efficient proof system for these relations today.

However, assuming that the soundness parameter λ is much smaller than
the number of ciphertexts τ , the size of the proofs of shortness does not matter
much. To keep the protocol as simple as possible, to make it easier to implement
the protocol and avoid bugs in practice, we choose to use the Stern-based proofs
by Kawachi et al. [KTX08] and Ling et al. [LNSW13] in our implementation and
estimates.

Concrete parameters. For a concrete instantiation, we use the example parame-
ters in Table 1, estimated to κ = 128 bits of long-term security using the LWE-
estimator [APS15] with the BKZ.qsieve cost-model. Inserting these parameters
into the proof of shortness, then each proof πSi,k

is of size ≈ 87µ KB. This makes
|πS | ≈ 175µλ KB. Furthermore, using the improvements by Beullens [Beu20] we
can shrink the proofs down to 18µλ KB. If we replace πS with the amortized
proof by Bootle et al. [BBC+18] we get a proof of total size 520 KB⋆. However, if
the number of ciphertexts τ is very large, we can ignore all other terms and get
a proof of correct decryption πD of size ≈ 14λτ KB. See Table 1 for details. The
ciphertext modulus q is chosen to be large enough to ensure correct decryption.

7.2 Implementation

We wrote a proof of concept implementation of our scheme in C++ using the
NTL-library [Sho21]. The implementation was benchmarked on an Intel Core i5
running at 2.3 GHz with 16 GB RAM. We ran the protocol with λ = 40, τ =
1000, µ = 68. The timings are given in Table 1. The implementation is very
simple, and consists of a total of 400 lines of code. Our source code is available
online ⋆⋆. We note that our implementation does not use the number theoretic
transform for fast multiplication of elements in the ring to reduce complexity.
A rough comparison to NFLlib [ABG+16], where they show clear improvements

⋆ Setting m = 2048, log q = 55, r = 90, b = 3, τ = 50, k = 2398, l = 5000 and h = 100
for soundness 2−45 and run the protocol twice, see [BBC+18, Section 4.1] for details.

⋆⋆ github.com/tjesi/verifiable-decryption-in-the-head.
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Parameter Explanation Constraints Value

N Dimension Power of two 2048
q Ciphertext modulus BDec ≪ q ≡ 1 mod 2N ≈ 255

p Plaintext modulus 2
κ Security parameter Long-term privacy 128
sec Statistical security 40
λ Soundness parameter 10, ..., 128
µ Repetitions of ΠZKPoS µ ≥ λ · ln(2)/ ln(3/2) 17, ..., 218
B∞ Bounds on secrets 1
BDec Decryption bound ∥v − su∥∞ ≤ BDec ≈ 213

Size of πD Timings for πD Size of πS Timings for πS

14λτ KB 4λτ ms 175λµ KB 30λµ ms

Table 1. Notation, explanation, constraints and concrete parameters for the protocol.
We also provide size and timings for decryption proof πD and proofs of shortness πS .

compared to NTL, indicates that an optimized implementation should provide
a speedup by at least an order of magnitude.

8 Comparison

8.1 Comparison to DistDec (TCC’10)

We sketch an extension of the passively secure distributed decryption protocol
ΠDistDec given by Bendlin and Damg̊ard [BD10], which is used in SPDZ [DKL+13,
DPSZ12]. The main difference compared to our protocol is that this protocol
requires zero-knowledge proofs to ensure correct computation at each step of the
protocol to achieve active security instead of repeating the decryption procedure
several times. The protocol works roughly as following:

1. Each party Di samples uniform Ei,j such that ∥Ei,j∥∞ ≤ 240BDec/ξp (for 40
bits statistical security) and computes the partial decryptions ti,j = siuj +
pEi,j for each ciphertext cj = (uj , vj).

2. Each party Di publish a zero-knowledge proof πLi,j
of the linear relation for

ti,j , using the lattice-based commitments together with their zero-knowledge
proof of linear relations by Baum et al. [BDL+18].

3. Each party Di use the amortized proof by Baum et al. [BBC+18] for size N
to prove that each Ei,j is bounded by 2secBDec/ξp, for commitments cEi,j .

4. The verifier checks the relations (vj − t0,j − t1,j mod q) ≡ mj mod p and
that all the zero-knowledge proofs are valid.

Elements tj and commitments cEi,j
are N log q and 2N log q bits, respectively.

Each proof of linearity πLi,j
is 6N log(6σ̄) bits. The amortized proof is 540 log(6σ̂)
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bits. The total size, for each Di, is

(3N log q + 6N log(6σ̄) + 540 log(6σ̂))τ bits.

Then one party can split the key into ξ = 2 shares, run ΠDistDec on each key-
share locally, and return the outputs from both D1 and D2 together with an
additional proof that the key-splitting was correct. We based the estimate on
the parameters from Table 1, with σ̄ ≈ 216 and σ̂ ≈ 266 (see e.g. Aranha et
al. [ABGS22] for details about proofs and sizes). However, the amortized proof
is not exact, which means that we must increase q to q ≈ 278 to ensure correct
decryption. For security κ = 128 we also need to increase N to N = 4096. The
proof is then of size ≈ 363τ KB. We conclude that ΠZKPCD is of equal size as
ΠDistDec for λ = 26 and otherwise larger.

We do not have access to timings for this protocol. However, as the modulus is
much larger, the dimension is twice the size, the zero-knowledge proofs include
Gaussian sampling and rounds of aborts, we expect the protocol to be much
slower than ours despite the large number of repetitions in our construction.

8.2 Comparison to Boschini et al. (PQ Crypto’20)

Boschini et al. [BCOS20] presents a zero-knowledge protocol for Ring-SIS and
Ring-LWE. Their protocol can be used to prove knowledge of secrets or plain-
texts, or prove correct decryption given a message and a BGV ciphertext. Con-
crete estimates for the latter are not given in the paper, but the number of
constraints is higher for decryption than for the former. For a slightly smaller
choice of parameters, a single proof of plaintext knowledge is of size 87 KB and
takes roughly 3 minutes to compute. We conclude that the proof system by Bos-
chini et al. will provide decryption proofs of equal size as protocol when λ = 6
and smaller otherwise. The time it takes to produce such a proof are several
orders of magnitude slower than ours, making the system impossible to use in
practice even for moderate sized sets of ciphertexts.

8.3 Comparison to Lyubashevsky et al. (PKC’21)

A recent publication by Lyubashevsky, Nguyen and Seiler [LNS21] gives a veri-
fiable decryption protocol for the Kyber encapsulation scheme [SAB+20]. Here,
the encryption is over a rank 2 module over a ring of dimension N = 256 and
modulus q = 3329 with secret and noise values bounded by B∞ = 2. The proof
of correct decryption of binary messages of dimension 256 is of size 43.6 KB,
which of equal size as in our protocol for λ = 3. We note that the message space
is smaller than in our protocol, mostly because we are forced to choose larger
parameters to ensure correct decryption, and hence, we can not provide a proof
of verifiable decryption for Kyber in particular. They do not provide timings,
but we notice that the proof system use Gaussian sampling, rejection sampling,
partially splitting rings and automorphisms – making the protocol very difficult
to implement correctly and securely in practice.
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8.4 Comparison to Silde (VOTING’22)

Silde [Sil22] presents a direct verifiable decryption of BGV ciphertexts. The
parameters are similar to our scheme, and the proof is of 43.6 KB per ciphertext.
This the same as in our scheme for λ = 3, ignoring the setup cost, while smaller
for larger λ. The timing of the decryption protocol is 76 ms per ciphertext, which
is equal to our timings for λ = 19 and otherwise up to 7 times faster for λ = 128.

9 Conclusion and Future Work

9.1 Summary and Conclusion

We have defined a passively secure distributed decryption protocol, and show
how this can be used to construct an interactive zero-knowledge protocol for cor-
rect decryption. This is the first both efficient and simple single-party verifiable
decryption protocol for lattice-based cryptography when instantiated with the
BGV encryption scheme.

The size and efficiency of the protocol is a small factor times λτ , for arbitrary
soundness parameter λ and number of ciphertexts τ . The long-term privacy pa-
rameter of the protocol κ can be set independently of, and in particular larger
than, λ. This allows an interactive instantiation of the protocol to be very ef-
ficient, both in size and computation. For κ = 128 we estimate the decryption
proof to be of size ≈ 14λτ KB and the proof/verification time to be only 4λ ms
per ciphertext, when τ is much larger than λ.

Altogether, our new lattice-based proof of decryption provides a unique com-
bination of efficiency and simplicity that make our proof system an interesting
candidate for real-world applications.

9.2 Future Improvements and Extensions

Remove the ZK-proofs of shortness. The Deal-algorithm outputs a zero-knowledge
proof proving that the sum of the shares of the secret key and noise used to com-
pute the public key are short. This is to ensure the correctness and security of
the encryption scheme. However, ElGamal does not require such a proof, and it
might be infeasible to find key-shares that are correct, but not short, that de-
crypts consistently for all BGV-ciphertexts. We would need to conduct a more
careful analysis to ensure that our construction is secure also without the zero-
knowledge proofs.

Instantiations based on other primitives. A natural future step is to apply our
transformation to other encryption schemes, also with other underlying hardness
assumptions. As an example, a threshold scheme has was recently constructed
based on isogenies [DM20].

Thanks

We thank Carsten Baum and the anonymous reviewers for helpful comments.
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